Skip to main content
Log in

Scaffolds for central nervous system tissue engineering

  • Review Article
  • Published:
Frontiers of Materials Science Aims and scope Submit manuscript

Abstract

Traumatic injuries to the brain and spinal cord of the central nervous system (CNS) lead to severe and permanent neurological deficits and to date there is no universally accepted treatment. Owing to the profound impact, extensive studies have been carried out aiming at reducing inflammatory responses and overcoming the inhibitory environment in the CNS after injury so as to enhance regeneration. Artificial scaffolds may provide a suitable environment for axonal regeneration and functional recovery, and are of particular importance in cases in which the injury has resulted in a cavitary defect. In this review we discuss development of scaffolds for CNS tissue engineering, focusing on mechanism of CNS injuries, various biomaterials that have been used in studies, and current strategies for designing and fabricating scaffolds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. National Spinal Cord Injury Statistical Center. Spinal cord injury facts and figures at a glance. The Journal of Spinal Cord Medicine, 2010, 33(4): 439–440

    Google Scholar 

  2. Sekhon L H, Fehlings M G. Epidemiology, demographics, and pathophysiology of acute spinal cord injury. Spine, 2001, 26(24 Suppl): S2–S12

    CAS  Google Scholar 

  3. Parr A M, Tator C H, Keating A. Bone marrow-derived mesenchymal stromal cells for the repair of central nervous system injury. Bone Marrow Transplantation, 2007, 40(7): 609–619

    CAS  Google Scholar 

  4. LaPlaca M C, Simon C M, Prado G R, et al. CNS injury biomechanics and experimental models. In: Weber J T, Maas A I R, eds. Neurotrauma: New Insights into Pathology and Treatment. Elsevier Science, 2007, 13–26

  5. Beattie M S, Hermann G E, Rogers R C, et al. Cell death in models of spinal cord injury. In: McKerracher L, Doucet G, Rossignol S, eds. Spinal Cord Trauma: Regeneration, Neural Repair and Functional Recovery. Amsterdam: Elsevier Science, 2002, 37–47

    Google Scholar 

  6. Sauaia A, Moore F A, Moore E E, et al. Epidemiology of trauma deaths: a reassessment. The Journal of Trauma Injury Infection and Critical Care, 1995, 38(2): 185–193

    CAS  Google Scholar 

  7. Tator C H. Update on the pathophysiology and pathology of acute spinal cord injury. Brain Pathology, 1995, 5(4): 407–413

    CAS  Google Scholar 

  8. Tator C H, Fehlings M G. Review of the secondary injury theory of acute spinal cord trauma with emphasis on vascular mechanisms. Journal of Neurosurgery, 1991, 75(1): 15–26

    CAS  Google Scholar 

  9. Guth L, Zhang Z Y, Steward O. The unique histopathological responses of the injured spinal cord — Implications for neuroprotective therapy. In: Trembly B S W, ed. Neuroprotective Agents: Fourth International Conference, 1999, 366–384

  10. Yiu G, He Z. Glial inhibition of CNS axon regeneration. Nature Reviews Neuroscience, 2006, 7(8): 617–627

    CAS  Google Scholar 

  11. Profyris C, Cheema S S, Zang D W, et al. Degenerative and regenerative mechanisms governing spinal cord injury. Neurobiology of Disease, 2004, 15(3): 415–436

    Google Scholar 

  12. Yiu G, He Z G. Glial inhibition of CNS axon regeneration. Nature Reviews Neuroscience, 2006, 7(8): 617–627

    CAS  Google Scholar 

  13. Fawcett J W, Asher R A. The glial scar and central nervous system repair. Brain Research Bulletin, 1999, 49(6): 377–391

    CAS  Google Scholar 

  14. Silver J, Miller J H. Regeneration beyond the glial scar. Nature Reviews Neuroscience, 2004, 5(2): 146–156

    CAS  Google Scholar 

  15. Tang X F, Davies J E, Davies S J A. Changes in distribution, cell associations, and protein expression levels of NG2, neurocan, phosphacan, brevican, versican V2, and tenascin-C during acute to chronic maturation of spinal cord scar tissue. Journal of Neuroscience Research, 2003, 71(3): 427–444

    CAS  Google Scholar 

  16. Hynds D L, Snow D M. Neurite outgrowth inhibition by chondroitin sulfate proteoglycan: stalling/stopping exceeds turning in human neuroblastoma growth cones. Experimental Neurology, 1999, 160(1): 244–255

    CAS  Google Scholar 

  17. Davies S J A, Goucher D R, Doller C, et al. Robust regeneration of adult sensory axons in degenerating white matter of the adult rat spinal cord. The Journal of Neuroscience, 1999, 19(14): 5810–5822

    CAS  Google Scholar 

  18. Pasterkamp R J, Giger R J, Ruitenberg M J, et al. Expression of the gene encoding the chemorepellent semaphorin III is induced in the fibroblast component of neural scar tissue formed following injuries of adult but not neonatal CNS. Molecular and Cellular Neurosciences, 1999, 13(2): 143–166

    CAS  Google Scholar 

  19. De Winter F, Oudega M, Lankhorst A J, et al. Injury-induced class 3 semaphorin expression in the rat spinal cord. Experimental Neurology, 2002, 175(1): 61–75

    Google Scholar 

  20. Chen M S, Huber A B, van der Haar M E, et al. Nogo-A is a myelin-associated neurite outgrowth inhibitor and an antigen for monoclonal antibody IN-1. Nature, 2000, 403(6768): 434–439

    CAS  Google Scholar 

  21. GrandPré T, Nakamura F, Vartanian T, et al. Identification of the Nogo inhibitor of axon regeneration as a Reticulon protein. Nature, 2000, 403(6768): 439–444

    Google Scholar 

  22. Prinjha R, Moore S E, Vinson M, et al. Neurobiology: Inhibitor of neurite outgrowth in humans. Nature, 2000, 403(6768): 383–384

    CAS  Google Scholar 

  23. Huber A B, Weinmann O, Brösamle C, et al. Patterns of Nogo mRNA and protein expression in the developing and adult rat and after CNS lesions. The Journal of Neuroscience, 2002, 22(9): 3553–3567

    CAS  Google Scholar 

  24. Wang X X, Chun S J, Treloar H, et al. Localization of Nogo-A and Nogo-66 receptor proteins at sites of axon-myelin and synaptic contact. The Journal of Neuroscience, 2002, 22(13): 5505–5515

    CAS  Google Scholar 

  25. McKerracher L, David S, Jackson D L, et al. Identification of myelin-associated glycoprotein as a major myelin-derived inhibitor of neurite growth. Neuron, 1994, 13(4): 805–811

    CAS  Google Scholar 

  26. Filbin M T. Myelin-associated inhibitors of axonal regeneration in the adult mammalian CNS. Nature Reviews Neuroscience, 2003, 4(9): 703–713

    CAS  Google Scholar 

  27. Kim J E, Li S X, GrandPré T, et al. Axon regeneration in young adult mice lacking Nogo-A/B. Neuron, 2003, 38(2): 187–199

    CAS  Google Scholar 

  28. GrandPré T, Li S X, Strittmatter S M. Nogo-66 receptor antagonist peptide promotes axonal regeneration. Nature, 2002, 417(6888): 547–551

    Google Scholar 

  29. Simonen M, Pedersen V, Weinmann O, et al. Systemic deletion of the myelin-associated outgrowth inhibitor Nogo-A improves regenerative and plastic responses after spinal cord injury. Neuron, 2003, 38(2): 201–211

    CAS  Google Scholar 

  30. Crowe M J, Bresnahan J C, Shuman S L, et al. Apoptosis and delayed degeneration after spinal cord injury in rats and monkeys. Nature Medicine, 1997, 3(1): 73–76

    CAS  Google Scholar 

  31. Barres B A, Schmid R, Sendnter M, et al. Multiple extracellular signals are required for long-term oligodendrocyte survival. Development, 1993, 118(1): 283–295

    CAS  Google Scholar 

  32. Takano R, Hisahara S, Namikawa K, et al. Nerve growth factor protects oligodendrocytes from tumor necrosis factor-α-induced injury through Akt-mediated signaling mechanisms. The Journal of Biological Chemistry, 2000, 275(21): 16360–16365

    CAS  Google Scholar 

  33. Vartanian T, Goodearl A, Viehöver A, et al. Axonal neuregulin signals cells of the oligodendrocyte lineage through activation of HER4 and Schwann cells through HER2 and HER3. The Journal of Cell Biology, 1997, 137(1): 211–220

    CAS  Google Scholar 

  34. Flores A I, Mallon B S, Matsui T, et al. Akt-mediated survival of oligodendrocytes induced by neuregulins. The Journal of Neuroscience, 2000, 20(20): 7622–7630

    CAS  Google Scholar 

  35. Casaccia-Bonnefil P. Cell death in the oligodendrocyte lineage: a molecular perspective of life/death decisions in development and disease. Glia, 2000, 29(2): 124–135

    CAS  Google Scholar 

  36. Woerly S, Petrov P, Syková E, et al. Neural tissue formation within porous hydrogels implanted in brain and spinal cord lesions: ultrastructural, immunohistochemical, and diffusion studies. Tissue Engineering, 1999, 5(5): 467–488

    CAS  Google Scholar 

  37. Engler A J, Sen S, Sweeney H L, et al. Matrix elasticity directs stem cell lineage specification. Cell, 2006, 126(4): 677–689

    CAS  Google Scholar 

  38. Leipzig N D, Shoichet M S. The effect of substrate stiffness on adult neural stem cell behavior. Biomaterials, 2009, 30(36): 6867–6878

    CAS  Google Scholar 

  39. Mori M, Yamaguchi M, Sumitomo S, et al. Hyaluronan-based biomaterials in tissue engineering. Acta Histochemica et Cytochemica, 2004, 37(1): 1–5

    CAS  Google Scholar 

  40. Özgenel G Y. Effects of hyaluronic acid on peripheral nerve scarring and regeneration in rats. Microsurgery, 2003, 23(6): 575–581

    Google Scholar 

  41. Estes J M, Scott Adzick N, Harrison M R, et al. Hyaluronate metabolism undergoes an ontogenic transition during fetal development: implications for scar-free wound healing. Journal of Pediatric Surgery, 1993, 28(10): 1227–1231

    CAS  Google Scholar 

  42. Campo G M, Avenoso A, Campo S, et al. Molecular size hyaluronan differently modulates toll-like receptor-4 in LPSinduced inflammation in mouse chondrocytes. Biochimie, 2010, 92(2): 204–215

    CAS  Google Scholar 

  43. Khaing Z Z, Milman B D, Vanscoy J E, et al. High molecular weight hyaluronic acid limits astrocyte activation and scar formation after spinal cord injury. Journal of Neural Engineering, 2011, 8(4): 046033

    Google Scholar 

  44. Wei Y T, Tian W M, Yu X, et al. Hyaluronic acid hydrogels with IKVAV peptides for tissue repair and axonal regeneration in an injured rat brain. Biomedical Materials, 2007, 2(3): S142–S146

    CAS  Google Scholar 

  45. Ma J, Tian W M, Hou S P, et al. An experimental test of stroke recovery by implanting a hyaluronic acid hydrogel carrying a Nogo receptor antibody in a rat model. Biomedical Materials, 2007, 2(4): 233–240

    CAS  Google Scholar 

  46. Lee K Y, Ha W S, Park W H. Blood compatibility and biodegradability of partially N-acylated chitosan derivatives. Biomaterials, 1995, 16(16): 1211–1216

    CAS  Google Scholar 

  47. Kim I Y, Seo S J, Moon H S, et al. Chitosan and its derivatives for tissue engineering applications. Biotechnology Advances, 2008, 26(1): 1–21

    CAS  Google Scholar 

  48. Yuan Y, Zhang P Y, Yang YM, et al. The interaction of Schwann cells with chitosan membranes and fibers in vitro. Biomaterials, 2004, 25(18): 4273–4278

    CAS  Google Scholar 

  49. Scanga V I, Goraltchouk A, Nussaiba N, et al. Biomaterials for neural-tissue engineering — Chitosan supports the survival, migration, and differentiation of adult-derived neural stem and progenitor cells. Canadian Journal of Chemistry, 2010, 88(3): 277–287

    CAS  Google Scholar 

  50. Itoh S, Yamaguchi I, Suzuki M, et al. Hydroxyapatite-coated tendon chitosan tubes with adsorbed laminin peptides facilitate nerve regeneration in vivo. Brain Research, 2003, 993(1–2): 111–123

    CAS  Google Scholar 

  51. Rosales-Cortes M, Peregrina-Sandoval J, Bañuelos-Pineda J, et al. Regeneration of the axotomised sciatic nerve in dogs using the tubulisation technique with Chitosan biomaterial preloaded with progesterone. Revista de Neurologia, 2003, 36(12): 1137–1141

    CAS  Google Scholar 

  52. Chenite A, Buschmann M, Wang D, et al. Rheological characterisation of thermogelling chitosan/glycerol-phosphate solutions. Carbohydrate Polymers, 2001, 46(1): 39–47

    CAS  Google Scholar 

  53. Crompton K E, Prankerd R J, Paganin D M, et al. Morphology and gelation of thermosensitive chitosan hydrogels. Biophysical Chemistry, 2005, 117(1): 47–53

    CAS  Google Scholar 

  54. Chenite A, Chaput C, Wang D, et al. Novel injectable neutral solutions of chitosan form biodegradable gels in situ. Biomaterials, 2000, 21(21): 2155–2161

    CAS  Google Scholar 

  55. Crompton K E, Tomas D, Finkelstein D I, et al. Inflammatory response on injection of chitosan/GP to the brain. Journal of Materials Science: Materials in Medicine, 2006, 17(7): 633–639

    CAS  Google Scholar 

  56. Barralet J E, Wang L, Lawson M, et al. Comparison of bone marrow cell growth on 2D and 3D alginate hydrogels. Journal of Materials Science: Materials in Medicine, 2005, 16(6): 515–519

    CAS  Google Scholar 

  57. Dvir-Ginzberg M, Gamlieli-Bonshtein I, Agbaria R, et al. Liver tissue engineering within alginate scaffolds: effects of cellseeding density on hepatocyte viability, morphology, and function. Tissue Engineering, 2003, 9(4): 757–766

    CAS  Google Scholar 

  58. Mosahebi A, Simon M, Wiberg M, et al. A novel use of alginate hydrogel as Schwann cell matrix. Tissue Engineering, 2001, 7(5): 525–534

    CAS  Google Scholar 

  59. Frampton J P, Hynd M R, Shuler M L, et al. Fabrication and optimization of alginate hydrogel constructs for use in 3D neural cell culture. Biomedical Materials, 2011, 6(1): 015002

    CAS  Google Scholar 

  60. Ashton R S, Banerjee A, Punyani S, et al. Scaffolds based on degradable alginate hydrogels and poly(lactide-co-glycolide) microspheres for stem cell culture. Biomaterials, 2007, 28(36): 5518–5525

    CAS  Google Scholar 

  61. Suzuki Y, Kitaura M, Wu S F, et al. Electrophysiological and horseradish peroxidase-tracing studies of nerve regeneration through alginate-filled gap in adult rat spinal cord. Neuroscience Letters, 2002, 318(3): 121–124

    CAS  Google Scholar 

  62. Kobayashi K, Huang C I, Lodge T P. Thermoreversible gelation of aqueous methylcellulose solutions. Macromolecules, 1999, 32(21): 7070–7077

    CAS  Google Scholar 

  63. Tate M C, Shear D A, Hoffman S W, et al. Biocompatibility of methylcellulose-based constructs designed for intracerebral gelation following experimental traumatic brain injury. Biomaterials, 2001, 22(10): 1113–1123

    CAS  Google Scholar 

  64. Gros T, Sakamoto J S, Blesch A, et al. Regeneration of long-tract axons through sites of spinal cord injury using templated agarose scaffolds. Biomaterials, 2010, 31(26): 6719–6729

    CAS  Google Scholar 

  65. Hejcl A, Lesný P, Prádný M, et al. Biocompatible hydrogels in spinal cord injury repair. Physiological Research, 2008, 57(Suppl 3): S121–S132

    CAS  Google Scholar 

  66. Giannetti S, Lauretti L, Fernandez E, et al. Acrylic hydrogel implants after spinal cord lesion in the adult rat. Neurological Research, 2001, 23(4): 405–409

    CAS  Google Scholar 

  67. Flynn L, Dalton P D, Shoichet M S. Fiber templating of poly(2-hydroxyethyl methacrylate) for neural tissue engineering. Biomaterials, 2003, 24(23): 4265–4272

    CAS  Google Scholar 

  68. Tsai E C, Dalton P D, Shoichet M S, et al. Synthetic hydrogel guidance channels facilitate regeneration of adult rat brainstem motor axons after complete spinal cord transection. Journal of Neurotrauma, 2004, 21(6): 789–804

    Google Scholar 

  69. Yu T T, Shoichet M S. Guided cell adhesion and outgrowth in peptide-modified channels for neural tissue engineering. Biomaterials, 2005, 26(13): 1507–1514

    CAS  Google Scholar 

  70. Lesný P, Prádný M, Jendelová P, et al. Macroporous hydrogels based on 2-hydroxyethyl methacrylate. Part 4: growth of rat bone marrow stromal cells in three-dimensional hydrogels with positive and negative surface charges and in polyelectrolyte complexes. Journal of Materials Science: Materials in Medicine, 2006, 17(9): 829–833

    Google Scholar 

  71. Hejcl A, Lesny P, Pradny M, et al. Macroporous hydrogels based on 2-hydroxyethyl methacrylate. Part 6: 3D hydrogels with positive and negative surface charges and polyelectrolyte complexes in spinal cord injury repair. Journal of Materials Science: Materials in Medicine, 2009, 20(7): 1571–1577

    CAS  Google Scholar 

  72. Tsai E C, Dalton P D, Shoichet M S, et al. Matrix inclusion within synthetic hydrogel guidance channels improves specific supraspinal and local axonal regeneration after complete spinal cord transection. Biomaterials, 2006, 27(3): 519–533

    CAS  Google Scholar 

  73. Kapur T A, Shoichet M S. Immobilized concentration gradients of nerve growth factor guide neurite outgrowth. Journal of Biomedical Materials Research Part A, 2004, 68A(2): 235–243

    CAS  Google Scholar 

  74. Woerly S, Pinet E, De Robertis L, et al. Heterogeneous PHPMA hydrogels for tissue repair and axonal regeneration in the injured spinal cord. Journal of Biomaterials Science, Polymer Edition, 1998, 9(7): 681–711

    CAS  Google Scholar 

  75. Woerly S, Doan V D, Sosa N, et al. Prevention of gliotic scar formation by NeuroGel™ allows partial endogenous repair of transected cat spinal cord. Journal of Neuroscience Research, 2004, 75(2): 262–272

    CAS  Google Scholar 

  76. Hejcl A, Sedy J, Kapcalova M, et al. HPMA-RGD hydrogels seeded with mesenchymal stem cells improve functional outcome in chronic spinal cord injury. Stem Cells and Development, 2010, 19(10): 1535–1546

    CAS  Google Scholar 

  77. Xu X M, Chen A, Guénard V, et al. Bridging Schwann cell transplants promote axonal regeneration from both the rostral and caudal stumps of transected adult rat spinal cord. Journal of Neurocytology, 1997, 26(1): 1–16

    CAS  Google Scholar 

  78. Borgens R B, Shi R Y, Bohnert D. Behavioral recovery from spinal cord injury following delayed application of polyethylene glycol. The Journal of Experimental Biology, 2002, 205(1): 1–12

    Google Scholar 

  79. Burdick J A, Ward M, Liang E, et al. Stimulation of neurite outgrowth by neurotrophins delivered from degradable hydrogels. Biomaterials, 2006, 27(3): 452–459

    CAS  Google Scholar 

  80. Piantino J, Burdick J A, Goldberg D, et al. An injectable, biodegradable hydrogel for trophic factor delivery enhances axonal rewiring and improves performance after spinal cord injury. Experimental Neurology, 2006, 201(2): 359–367

    CAS  Google Scholar 

  81. Lampe K J, Mooney R G, Bjugstad K B, et al. Effect of macromer weight percent on neural cell growth in 2D and 3D nondegradable PEG hydrogel culture. Journal of Biomedical Materials Research Part A, 2010, 94(4): 1162–1171

    Google Scholar 

  82. Xie J W, MacEwan M R, Schwartz A G, et al. Electrospun nanofibers for neural tissue engineering. Nanoscale, 2010, 2(1): 35–44

    CAS  Google Scholar 

  83. Smith L A, Ma P X. Nano-fibrous scaffolds for tissue engineering. Colloids and Surfaces B: Biointerfaces, 2004, 39(3): 125–131

    CAS  Google Scholar 

  84. Wang W, Itoh S, Matsuda A, et al. Influences of mechanical properties and permeability on chitosan nano/microfiber mesh tubes as a scaffold for nerve regeneration. Journal of Biomedical Materials Research Part A, 2008, 84A(2): 557–566

    CAS  Google Scholar 

  85. Liu T, Teng W K, Chan B P, et al. Photochemical crosslinked electrospun collagen nanofibers: synthesis, characterization and neural stem cell interactions. Journal of Biomedical Materials Research Part A, 2010, 95A(1): 276–282

    CAS  Google Scholar 

  86. Wang W, Itoh S, Konno K, et al. Effects of Schwann cell alignment along the oriented electrospun chitosan nanofibers on nerve regeneration. Journal of Biomedical Materials Research Part A, 2009, 91A(4): 994–1005

    CAS  Google Scholar 

  87. Hurtado A, Cregg J M, Wang H B, et al. Robust CNS regeneration after complete spinal cord transection using aligned poly-L-lactic acid microfibers. Biomaterials, 2011, 32(26): 6068–6079

    CAS  Google Scholar 

  88. Yang F, Murugan R, Wang S, et al. Electrospinning of nano/ micro scale poly(L-lactic acid) aligned fibers and their potential in neural tissue engineering. Biomaterials, 2005, 26(15): 2603–2610

    CAS  Google Scholar 

  89. Gertz C C, Leach M K, Birrell L K, et al. Accelerated neuritogenesis and maturation of primary spinal motor neurons in response to nanofibers. Developmental Neurobiology, 2010, 70(8): 589–603

    CAS  Google Scholar 

  90. Corey JM, Gertz C C, Wang B S, et al. The design of electrospun PLLA nanofiber scaffolds compatible with serum-free growth of primary motor and sensory neurons. Acta Biomaterialia, 2008, 4(4): 863–875

    CAS  Google Scholar 

  91. Bechara S L, Judson A, Popat K C. Template synthesized poly(ɛ-caprolactone) nanowire surfaces for neural tissue engineering. Biomaterials, 2010, 31(13): 3492–3501

    CAS  Google Scholar 

  92. Subramanian A, Krishnan U M, Sethuraman S. Fabrication of uniaxially aligned 3D electrospun scaffolds for neural regeneration. Biomedical Materials, 2011, 6(2): 025004

    Google Scholar 

  93. Christopherson G T, Song H, Mao H Q. The influence of fiber diameter of electrospun substrates on neural stem cell differentiation and proliferation. Biomaterials, 2009, 30(4): 556–564

    CAS  Google Scholar 

  94. Carlberg B, Axell M Z, Nannmark U, et al. Electrospun polyurethane scaffolds for proliferation and neuronal differentiation of human embryonic stem cells. Biomedical Materials, 2009, 4(4): 045004

    Google Scholar 

  95. Corey J M, Lin D Y, Mycek K B, et al. Aligned electrospun nanofibers specify the direction of dorsal root ganglia neurite growth. Journal of Biomedical Materials Research Part A, 2007, 83A(3): 636–645

    CAS  Google Scholar 

  96. Xie J, Willerth S M, Li X, et al. The differentiation of embryonic stem cells seeded on electrospun nanofibers into neural lineages. Biomaterials, 2009, 30(3): 354–362

    CAS  Google Scholar 

  97. Zhao X, Pan F, Xu H, et al. Molecular self-assembly and applications of designer peptide amphiphiles. Chemical Society Reviews, 2010, 39(9): 3480–3498

    CAS  Google Scholar 

  98. Semino C E, Kasahara J, Hayashi Y, et al. Entrapment of migrating hippocampal neural cells in three-dimensional peptide nanofiber scaffold. Tissue Engineering, 2004, 10(3-4): 643–655

    CAS  Google Scholar 

  99. Holmes T C, de Lacalle S, Su X, et al. Extensive neurite outgrowth and active synapse formation on self-assembling peptide scaffolds. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97(12): 6728–6733

    CAS  Google Scholar 

  100. Silva G A, Czeisler C, Niece K L, et al. Selective differentiation of neural progenitor cells by high-epitope density nanofibers. Science, 2004, 303(5662): 1352–1355

    CAS  Google Scholar 

  101. Tysseling-Mattiace V M, Sahni V, Niece K L, et al. Self-assembling nanofibers inhibit glial scar formation and promote axon elongation after spinal cord injury. The Journal of Neuroscience, 2008, 28(14): 3814–3823

    CAS  Google Scholar 

  102. Ellis-Behnke R G, Liang Y X, You S W, et al. Nano neuro knitting: peptide nanofiber scaffold for brain repair and axon regeneration with functional return of vision. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103(13): 5054–5059

    CAS  Google Scholar 

  103. Geiger B, Spatz J P, Bershadsky A D. Environmental sensing through focal adhesions. Nature Reviews Molecular Cell Biology, 2009, 10(1): 21–33

    CAS  Google Scholar 

  104. Curran J M, Chen R, Hunt J A. Controlling the phenotype and function of mesenchymal stem cells in vitro by adhesion to silane-modified clean glass surfaces. Biomaterials, 2005, 26(34): 7057–7067

    CAS  Google Scholar 

  105. Ulman A. Formation and structure of self-assembled monolayers. Chemical Reviews, 1996, 96(4): 1533–1554

    CAS  Google Scholar 

  106. Phillips J E, Petrie T A, Creighton F P, et al. Human mesenchymal stem cell differentiation on self-assembled monolayers presenting different surface chemistries. Acta Biomaterialia, 2010, 6(1): 12–20

    CAS  Google Scholar 

  107. Faucheux N, Schweiss R, Lützow K, et al. Self-assembled monolayers with different terminating groups as model substrates for cell adhesion studies. Biomaterials, 2004, 25(14): 2721–2730

    CAS  Google Scholar 

  108. Barbosa J N, Barbosa M A, Aguas A P. Adhesion of human leukocytes to biomaterials: an in vitro study using alkanethiolate monolayers with different chemically functionalized surfaces. Journal of Biomedical Materials Research Part A, 2003, 65(4): 429–434

    Google Scholar 

  109. Inoue S, Imamura M, Umezawa A, et al. Attachment, proliferation and adipogenic differentiation of adipo-stromal cells on self-assembled monolayers of different chemical compositions. Journal of Biomaterials Science, Polymer Edition, 2008, 19(7): 893–914

    CAS  Google Scholar 

  110. Keselowsky B G, Collard D M, García A J. Integrin binding specificity regulates biomaterial surface chemistry effects on cell differentiation. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102(17): 5953–5957

    CAS  Google Scholar 

  111. Keselowsky B G, Collard D M, García A J. Surface chemistry modulates focal adhesion composition and signaling through changes in integrin binding. Biomaterials, 2004, 25(28): 5947–5954

    CAS  Google Scholar 

  112. Ren Y J, Zhang H, Huang H, et al. In vitro behavior of neural stem cells in response to different chemical functional groups. Biomaterials, 2009, 30(6): 1036–1044

    CAS  Google Scholar 

  113. Georges P C, Miller W J, Meaney D F, et al. Matrices with compliance comparable to that of brain tissue select neuronal over glial growth in mixed cortical cultures. Biophysical Journal, 2006, 90(8): 3012–3018

    CAS  Google Scholar 

  114. Saha K, Keung A J, Irwin E F, et al. Substrate modulus directs neural stem cell behavior. Biophysical Journal, 2008, 95(9): 4426–4438

    CAS  Google Scholar 

  115. Lynam D, Bednark B, Peterson C, et al. Precision microchannel scaffolds for central and peripheral nervous system repair. Journal of Materials Science: Materials in Medicine, 2011, 22(9): 2119–2130

    CAS  Google Scholar 

  116. Wong D Y, Leveque J C, Brumblay H, et al. Macro-architectures in spinal cord scaffold implants influence regeneration. Journal of Neurotrauma, 2008, 25(8): 1027–1037

    Google Scholar 

  117. Scott J B, Afshari M, Kotek R, et al. The promotion of axon extension in vitro using polymer-templated fibrin scaffolds. Biomaterials, 2011, 32(21): 4830–4839

    CAS  Google Scholar 

  118. Stokols S, Sakamoto J, Breckon C, et al. Templated agarose scaffolds support linear axonal regeneration. Tissue Engineering, 2006, 12(10): 2777–2787

    CAS  Google Scholar 

  119. Stokols S, Tuszynski M H. Freeze-dried agarose scaffolds with uniaxial channels stimulate and guide linear axonal growth following spinal cord injury. Biomaterials, 2006, 27(3): 443–451

    CAS  Google Scholar 

  120. Möllers S, Heschel I, Damink L H H O, et al. Cytocompatibility of a novel, longitudinally microstructured collagen scaffold intended for nerve tissue repair. Tissue Engineering Part A, 2009, 15(3): 461–472

    Google Scholar 

  121. Luo Y, Shoichet M S. A photolabile hydrogel for guided threedimensional cell growth and migration. Nature Materials, 2004, 3(4): 249–253

    CAS  Google Scholar 

  122. Xie J W, MacEwan M R, Li X R, et al. Neurite outgrowth on nanofiber scaffolds with different orders, structures, and surface properties. ACS Nano, 2009, 3(5): 1151–1159

    CAS  Google Scholar 

  123. Cooper A, Bhattarai N, Zhang M. Fabrication and cellular compatibility of aligned chitosan-PCL fibers for nerve tissue regeneration. Carbohydrate Polymers, 2011, 85(1): 149–156

    CAS  Google Scholar 

  124. Cho Y I, Choi J S, Jeong S Y, et al. Nerve growth factor (NGF)-conjugated electrospun nanostructures with topographical cues for neuronal differentiation of mesenchymal stem cells. Acta Biomaterialia, 2010, 6(12): 4725–4733

    CAS  Google Scholar 

  125. Xie J, Willerth S M, Li X, et al. The differentiation of embryonic stem cells seeded on electrospun nanofibers into neural lineages. Biomaterials, 2009, 30(3): 354–362

    CAS  Google Scholar 

  126. Wang Y S, Yao M, Zhou J H, et al. The promotion of neural progenitor cells proliferation by aligned and randomly oriented collagen nanofibers through β1 integrin/MAPK signaling pathway. Biomaterials, 2011, 32(28): 6737–6744

    CAS  Google Scholar 

  127. Liu B P, Fournier A, GrandPré T, et al. Myelin-associated glycoprotein as a functional ligand for the Nogo-66 receptor. Science, 2002, 297(5584): 1190–1193

    CAS  Google Scholar 

  128. Domeniconi M, Cao Z U, Spencer T, et al. Myelin-associated glycoprotein interacts with the Nogo66 receptor to inhibit neurite outgrowth. Neuron, 2002, 35(2): 283–290

    CAS  Google Scholar 

  129. Tian W M, Zhang C L, Hou S P, et al. Hyaluronic acid hydrogel as Nogo-66 receptor antibody delivery system for the repairing of injured rat brain: in vitro. Journal of Controlled Release, 2005, 102(1): 13–22

    CAS  Google Scholar 

  130. Hou S, Tian W, Xu Q, et al. The enhancement of cell adherence and inducement of neurite outgrowth of dorsal root ganglia cocultured with hyaluronic acid hydrogels modified with Nogo-66 receptor antagonist in vitro. Neuroscience, 2006, 137(2): 519–529

    CAS  Google Scholar 

  131. Wei Y T, He Y, Xu C L, et al. Hyaluronic acid hydrogel modified with nogo-66 receptor antibody and poly-L-lysine to promote axon regrowth after spinal cord injury. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 2010, 95B(1): 110–117

    CAS  Google Scholar 

  132. Grendt S J, Rodriguez J L, Pawlik J W, et al. Consequences of high-dose steroid therapy for acute spinal cord injury. The Journal of Trauma Injury, Infection, and Critical Care, 1997, 42(2): 279–284

    Google Scholar 

  133. Qian T, Guo X, Levi A D, et al. High-dose methylprednisolone may cause myopathy in acute spinal cord injury patients. Spinal Cord, 2005, 43(4): 199–203

    CAS  Google Scholar 

  134. Chvatal S A, Kim Y-T, Bratt-Leal A M, et al. Spatial distribution and acute anti-inflammatory effects of Methylprednisolone after sustained local delivery to the contused spinal cord. Biomaterials, 2008, 29(12): 1967–1975

    CAS  Google Scholar 

  135. Schaub N J, Gilbert R J. Controlled release of 6-aminonicotinamide from aligned, electrospun fibers alters astrocyte metabolism and dorsal root ganglia neurite outgrowth. Journal of Neural Engineering, 2011, 8(4): 046026

    Google Scholar 

  136. Sayer F T, Oudega M, Hagg T. Neurotrophins reduce degeneration of injured ascending sensory and corticospinal motor axons in adult rat spinal cord. Experimental Neurology, 2002, 175(1): 282–296

    CAS  Google Scholar 

  137. Novikova L N, Novikov L N, Kellerth J O. Survival effects of BDNF and NT-3 on axotomized rubrospinal neurons depend on the temporal pattern of neurotrophin administration. European Journal of Neuroscience, 2000, 12(2): 776–780

    CAS  Google Scholar 

  138. Giger R J, Hollis II E R, Tuszynski M H. Guidance molecules in axon regeneration. Cold Spring Harbor Perspectives in Biology, 2010, 2(7): a001867

    Google Scholar 

  139. Krewson C E, Klarman M L, Saltzman W M. Distribution of nerve growth factor following direct delivery to brain interstitium. Brain Research, 1995, 680(1–2): 196–206

    CAS  Google Scholar 

  140. Li X, Yang Z, Zhang A. The effect of neurotrophin-3/chitosan carriers on the proliferation and differentiation of neural stem cells. Biomaterials, 2009, 30(28): 4978–4985

    CAS  Google Scholar 

  141. Yu L M Y, Wosnick J H, Shoichet M S. Miniaturized system of neurotrophin patterning for guided regeneration. Journal of Neuroscience Methods, 2008, 171(2): 253–263

    CAS  Google Scholar 

  142. Dodla M C, Bellamkonda R V. Differences between the effect of anisotropic and isotropic laminin and nerve growth factor presenting scaffolds on nerve regeneration across long peripheral nerve gaps. Biomaterials, 2008, 29(1): 33–46

    CAS  Google Scholar 

  143. Jain A, Kim Y T, McKeon R J, et al. In situ gelling hydrogels for conformal repair of spinal cord defects, and local delivery of BDNF after spinal cord injury. Biomaterials, 2006, 27(3): 497–504

    CAS  Google Scholar 

  144. Park J, Lim E, Back S, et al. Nerve regeneration following spinal cord injury using matrix metalloproteinase-sensitive, hyaluronic acid-based biomimetic hydrogel scaffold containing brainderived neurotrophic factor. Journal of Biomedical Materials Research Part A, 2010, 93(3): 1091–1099

    Google Scholar 

  145. Iannotti C, Li H Y, Yan P, et al. Glial cell line-derived neurotrophic factor-enriched bridging transplants promote propriospinal axonal regeneration and enhance myelination after spinal cord injury. Experimental Neurology, 2003, 183(2): 379–393

    CAS  Google Scholar 

  146. Wang Y C, Wu Y T, Huang H Y, et al. Sustained intraspinal delivery of neurotrophic factor encapsulated in biodegradable nanoparticles following contusive spinal cord injury. Biomaterials, 2008, 29(34): 4546–4553

    CAS  Google Scholar 

  147. Bhang S H, Lee T J, Lim J M, et al. The effect of the controlled release of nerve growth factor from collagen gel on the efficiency of neural cell culture. Biomaterials, 2009, 30(1): 126–132

    CAS  Google Scholar 

  148. Cooke M J, Wang Y F, Morshead C M, et al. Controlled epicortical delivery of epidermal growth factor for the stimulation of endogenous neural stem cell proliferation in stroke-injured brain. Biomaterials, 2011, 32(24): 5688–5697

    CAS  Google Scholar 

  149. Mo L H, Yang Z Y, Zhang A F, et al. The repair of the injured adult rat hippocampus with NT-3-chitosan carriers. Biomaterials, 2010, 31(8): 2184–2192

    CAS  Google Scholar 

  150. Taylor S J, Sakiyama-Elbert S E. Effect of controlled delivery of neurotrophin-3 from fibrin on spinal cord injury in a long term model. Journal of Controlled Release, 2006, 116(2): 204–210

    CAS  Google Scholar 

  151. Taylor S J, Rosenzweig E S, McDonald III JW, et al. Delivery of neurotrophin-3 from fibrin enhances neuronal fiber sprouting after spinal cord injury. Journal of Controlled Release, 2006, 113(3): 226–235

    CAS  Google Scholar 

  152. Sakiyama-Elbert S E, Hubbell J A. Development of fibrin derivatives for controlled release of heparin-binding growth factors. Journal of Controlled Release, 2000, 65(3): 389–402

    CAS  Google Scholar 

  153. Willerth S M, Johnson P J, Maxwell D J, et al. Rationally designed peptides for controlled release of nerve growth factor from fibrin matrices. Journal of Biomedical Materials Research Part A, 2007, 80A(1): 13–23

    CAS  Google Scholar 

  154. Johnson P J, Tatara A, Shiu A, et al. Controlled release of neurotrophin-3 and platelet-derived growth factor from fibrin scaffolds containing neural progenitor cells enhances survival and differentiation into neurons in a subacute model of SCI. Cell Transplantation, 2010, 19(1): 89–101

    Google Scholar 

  155. Taylor S J, McDonald III J W, Sakiyama-Elbert S E. Controlled release of neurotrophin-3 from fibrin gels for spinal cord injury. Journal of Controlled Release, 2004, 98(2): 281–294

    CAS  Google Scholar 

  156. Rahman N, Purpura K A, Wylie R G, et al. The use of vascular endothelial growth factor functionalized agarose to guide pluripotent stem cell aggregates toward blood progenitor cells. Biomaterials, 2010, 31(32): 8262–8270

    CAS  Google Scholar 

  157. Shen Y H, Shoichet MS, Radisic M. Vascular endothelial growth factor immobilized in collagen scaffold promotes penetration and proliferation of endothelial cells. Acta Biomaterialia, 2008, 4(3): 477–489

    CAS  Google Scholar 

  158. Cho Y I, Choi J S, Jeong S Y, et al. Nerve growth factor (NGF)-conjugated electrospun nanostructures with topographical cues for neuronal differentiation of mesenchymal stem cells. Acta Biomaterialia, 2010, 6(12): 4725–4733

    CAS  Google Scholar 

  159. Xu X Y, Geremia N, Bao F, et al. Schwann cell coculture improves the therapeutic effect of bone marrow stromal cells on recovery in spinal cord-injured mice. Cell Transplantation, 2011, 20(7): 1065–1086

    Google Scholar 

  160. Schnell E, Klinkhammer K, Balzer S, et al. Guidance of glial cell migration and axonal growth on electrospun nanofibers of poly-ɛ-caprolactone and a collagen/poly-ɛ-caprolactone blend. Biomaterials, 2007, 28(19): 3012–3025

    CAS  Google Scholar 

  161. Guo J, Su H, Zeng Y, et al. Reknitting the injured spinal cord by self-assembling peptide nanofiber scaffold. Nanomedicine: Nanotechnology, Biology and Medicine, 2007, 3(4): 311–321

    CAS  Google Scholar 

  162. Shen Y X, Qian Y Q, Zhang H X, et al. Guidance of olfactory ensheathing cell growth and migration on electrospun silk fibroin scaffolds. Cell Transplantation, 2010, 19(2): 147–157

    Google Scholar 

  163. Lu D, Mahmood A, Qu C, et al. Collagen scaffolds populated with human marrow stromal cells reduce lesion volume and improve functional outcome after traumatic brain injury. Neurosurgery, 2007, 61(3): 596–603

    Google Scholar 

  164. Xiong Y, Qu C S, Mahmood A, et al. Delayed transplantation of human marrow stromal cell-seeded scaffolds increases transcallosal neural fiber length, angiogenesis, and hippocampal neuronal survival and improves functional outcome after traumatic brain injury in rats. Brain Research, 2009, 1263: 183–191

    CAS  Google Scholar 

  165. Ren Y J, Zhou Z Y, Liu B F, et al. Preparation and characterization of fibroin/hyaluronic acid composite scaffold. International Journal of Biological Macromolecules, 2009, 44(4): 372–378

    CAS  Google Scholar 

  166. Yu H W, Cao B, Feng M Y, et al. Combinated transplantation of neural stem cells and collagen type I promote functional recovery after cerebral ischemia in rats. The Anatomical Record: Advances in Integrative Anatomy and Evolutionary Biology, 2010, 293(5): 911–917

    Google Scholar 

  167. Oudega M, Xu X M. Schwann cell transplantation for repair of the adult spinal cord. Journal of Neurotrauma, 2006, 23(3–4): 453–467

    Google Scholar 

  168. Mirsky R, Jessen K R, Brennan A, et al. Schwann cells as regulators of nerve development. Journal of Physiology — Paris, 2002, 96(1–2): 17–24

    CAS  Google Scholar 

  169. Boruch A V, Conners J J, Pipitone M, et al. Neurotrophic and migratory properties of an olfactory ensheathing cell line. Glia, 2001, 33(3): 225–229

    CAS  Google Scholar 

  170. Au E, Roskams A J. Olfactory ensheathing cells of the lamina propria in vivo and in vitro. Glia, 2003, 41(3): 224–236

    Google Scholar 

  171. Ramer L M, Au E, Richter M W, et al. Peripheral olfactory ensheathing cells reduce scar and cavity formation and promote regeneration after spinal cord injury. The Journal of Comparative Neurology, 2004, 473(1): 1–15

    Google Scholar 

  172. Li B C, Jiao S S, Xu C A, et al. PLGA conduit seeded with olfactory ensheathing cells for bridging sciatic nerve defect of rats. Journal of Biomedical Materials Research Part A, 2010, 94(3): 769–780

    Google Scholar 

  173. Cao Q L, Zhang Y P, Howard R M, et al. Pluripotent stem cells engrafted into the normal or lesioned adult rat spinal cord are restricted to a glial lineage. Experimental Neurology, 2001, 167(1): 48–58

    CAS  Google Scholar 

  174. Zurita M, Vaquero J. Functional recovery in chronic paraplegia after bone marrow stromal cells transplantation. Neuroreport, 2004, 15(7): 1105–1108

    Google Scholar 

  175. Mahmood A, Lu D, Wang L, et al. Treatment of traumatic brain injury in female rats with intravenous administration of bone marrow stromal cells. Neurosurgery, 2001, 49(5): 1196–1204

    CAS  Google Scholar 

  176. Gerardo-Nava J, Führmann T, Klinkhammer K, et al. Human neural cell interactions with orientated electrospun nanofibers in vitro. Nanomedicine: Nanotechnology, Biology and Medicine, 2009, 4(1): 11–30

    CAS  Google Scholar 

  177. Prabhakaran M P, Venugopal J R, Ramakrishna S. Mesenchymal stem cell differentiation to neuronal cells on electrospun nanofibrous substrates for nerve tissue engineering. Biomaterials, 2009, 30(28): 4996–5003

    CAS  Google Scholar 

  178. Fukushima K, Enomoto M, Tomizawa S, et al. The axonal regeneration across a honeycomb collagen sponge applied to the transected spinal cord. Journal of Medical and Dental Sciences, 2008, 55(1): 71–79

    Google Scholar 

  179. Koh H S, Yong T, Chan C K, et al. Enhancement of neurite outgrowth using nano-structured scaffolds coupled with laminin. Biomaterials, 2008, 29(26): 3574–3582

    CAS  Google Scholar 

  180. Mukhatyar V J, Salmerón-Sánchez M, Rudra S, et al. Role of fibronectin in topographical guidance of neurite extension on electrospun fibers. Biomaterials, 2011, 32(16): 3958–3968

    CAS  Google Scholar 

  181. Li W, Guo Y, Wang H, et al. Electrospun nanofibers immobilized with collagen for neural stem cells culture. Journal of Materials Science: Materials in Medicine, 2008, 19(2): 847–854

    CAS  Google Scholar 

  182. Hashemi S M, Soudi S, Shabani I, et al. The promotion of stemness and pluripotency following feeder-free culture of embryonic stem cells on collagen-grafted 3-dimensional nanofibrous scaffold. Biomaterials, 2011, 32(30): 7363–7374

    CAS  Google Scholar 

  183. Borkenhagen M, Clémence J-F, Sigrist H, et al. Threedimensional extracellular matrix engineering in the nervous system. Journal of Biomedical Materials Research, 1998, 40(3): 392–400

    CAS  Google Scholar 

  184. Cui F Z, Tian W M, Hou S P, et al. Hyaluronic acid hydrogel immobilized with RGD peptides for brain tissue engineering. Journal of Materials Science: Materials in Medicine, 2006, 17(12): 1393–1401

    CAS  Google Scholar 

  185. Suzuki M, Itoh S, Yamaguchi I, et al. Tendon chitosan tubes covalently coupled with synthesized laminin peptides facilitate nerve regeneration in vivo. Journal of Neuroscience Research, 2003, 72(5): 646–659

    CAS  Google Scholar 

  186. Schense J C, Bloch J, Aebischer P, et al. Enzymatic incorporation of bioactive peptides into fibrin matrices enhances neurite extension. Nature Biotechnology, 2000, 18(4): 415–419

    CAS  Google Scholar 

  187. Spitzer N C. Electrical activity in early neuronal development. Nature, 2006, 444(7120): 707–712

    CAS  Google Scholar 

  188. Ramakers G J A, Winter J, Hoogland T M, et al. Depolarization stimulates lamellipodia formation and axonal but not dendritic branching in cultured rat cerebral cortex neurons. Developmental Brain Research, 1998, 108(1-2): 205–216

    CAS  Google Scholar 

  189. Kerns J M, Fakhouri A J, Weinrib H P, et al. Electrical stimulation of nerve regeneration in the rat: the early effects evaluated by a vibrating probe and electron microscopy. Neuroscience, 1991, 40(1): 93–107

    CAS  Google Scholar 

  190. Borgens R B, Bohnert D M. The responses of mammalian spinal axons to an applied DC voltage gradient. Experimental Neurology, 1997, 145(2): 376–389

    CAS  Google Scholar 

  191. Kotwal A, Schmidt C E. Electrical stimulation alters protein adsorption and nerve cell interactions with electrically conducting biomaterials. Biomaterials, 2001, 22(10): 1055–1064

    CAS  Google Scholar 

  192. Schmidt C E, Shastri V R, Vacanti J P, et al. Stimulation of neurite outgrowth using an electrically conducting polymer. Proceedings of the National Academy of Sciences of the United States of America, 1997, 94(17): 8948–8953

    CAS  Google Scholar 

  193. Kim D H, Richardson-Burns S M, Hendricks J L, et al. Effect of immobilized nerve growth factor on conductive polymers: Electrical properties and cellular response. Advanced Functional Materials, 2007, 17(1): 79–86

    CAS  Google Scholar 

  194. Stauffer W R, Cui X T. Polypyrrole doped with 2 peptide sequences from laminin. Biomaterials, 2006, 27(11): 2405–2413

    CAS  Google Scholar 

  195. Xie J, Macewan M R, Willerth S M, et al. Conductive coresheath nanofibers and their potential application in neural tissue engineering. Advanced Functional Materials, 2009, 19(14): 2312–2318

    CAS  Google Scholar 

  196. Lee J Y, Bashur C A, Goldstein A S, et al. Polypyrrole-coated electrospun PLGA nanofibers for neural tissue applications. Biomaterials, 2009, 30(26): 4325–4335

    CAS  Google Scholar 

  197. Collier J H, Camp J P, Hudson T W, et al. Synthesis and characterization of polypyrrole-hyaluronic acid composite biomaterials for tissue engineering applications. Journal of Biomedical Materials Research, 2000, 50(4): 574–584

    CAS  Google Scholar 

  198. Runge M B, Dadsetan M, Baltrusaitis J, et al. The development of electrically conductive polycaprolactone fumarate-polypyrrole composite materials for nerve regeneration. Biomaterials, 2010, 31(23): 5916–5926

    Google Scholar 

  199. Rivers T J, Hudson T W, Schmidt C E. Synthesis of a novel, biodegradable electrically conducting polymer for biomedical applications. Advanced Functional Materials, 2002, 12(1): 33–37

    CAS  Google Scholar 

  200. Tran P A, Zhang L, Webster T J. Carbon nanofibers and carbon nanotubes in regenerative medicine. Advanced Drug Delivery Reviews, 2009, 61(12): 1097–1114

    CAS  Google Scholar 

  201. Li X M, Gao H, Uo M, et al. Effect of carbon nanotubes on cellular functions in vitro. Journal of Biomedical Materials Research Part A, 2009, 91A(1): 132–139

    CAS  Google Scholar 

  202. Cellot G, Cilia E, Cipollone S, et al. Carbon nanotubes might improve neuronal performance by favouring electrical shortcuts. Nature Nanotechnology, 2009, 4(2): 126–133

    CAS  Google Scholar 

  203. Jin G Z, Kim M, Shin U S, et al. Neurite outgrowth of dorsal root ganglia neurons is enhanced on aligned nanofibrous biopolymer scaffold with carbon nanotube coating. Neuroscience Letters, 2011, 501(1): 10–14

    CAS  Google Scholar 

  204. Abdullah C A C, Asanithi P, Brunner E W, et al. Aligned, isotropic and patterned carbon nanotube substrates that control the growth and alignment of Chinese hamster ovary cells. Nanotechnology, 2011, 22(20): 205102

    Google Scholar 

  205. Lewitus D Y, Landers J, Branch J R, et al. Biohybrid carbon nanotube/agarose fibers for neural tissue engineering. Advanced Functional Materials, 2011, 21(14): 2624–2632

    CAS  Google Scholar 

  206. Lee H J, Park J, Yoon O J, et al. Amine-modified single-walled carbon nanotubes protect neurons from injury in a rat stroke model. Nature Nanotechnology, 2011, 6(2): 121–125

    CAS  Google Scholar 

  207. Allen B L, Kichambare P D, Gou P, et al. Biodegradation of single-walled carbon nanotubes through enzymatic catalysis. Nano Letters, 2008, 8(11): 3899–3903

    CAS  Google Scholar 

  208. Kagan V E, Konduru N V, Feng W H, et al. Carbon nanotubes degraded by neutrophil myeloperoxidase induce less pulmonary inflammation. Nature Nanotechnology, 2010, 5(5): 354–359

    CAS  Google Scholar 

  209. Li X, Yang Z, Zhang A, et al. Repair of thoracic spinal cord injury by chitosan tube implantation in adult rats. Biomaterials, 2009, 30(6): 1121–1132

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiu-Mei Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

He, J., Wang, XM., Spector, M. et al. Scaffolds for central nervous system tissue engineering. Front. Mater. Sci. 6, 1–25 (2012). https://doi.org/10.1007/s11706-012-0157-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11706-012-0157-5

Keywords

Navigation