Skip to main content
Log in

Overcoming doping bottleneck by using surfactant and strain

  • Review Article
  • Published:
Frontiers of Materials Science Aims and scope Submit manuscript

Abstract

Overcoming the doping bottleneck in semiconductors, especially in wide band gap semiconductors, has been a challenge in semiconductor physics for many years. In this paper, we review some recent progresses in enhancing doping by surfactant and strain. We show that surfactant and strain are two effective approaches to enhance dopant solubility in epitaxial growth. The surfactant can introduce an energy level deep inside the band gap, making the host compound less stable, thus lower the formation energy of the intentional dopant. The strain enhanced doping is based on the observation that dopant induces volume change in the host. If the external strain is in the same direction as the dopant induced volume change, the formation energy of the dopant is reduced. This effect can be used to tune doping sites, thus doping type, in a host. A hybrid method to both include strain and surfactant is proposed, which can be a promising general method to further enhance doping.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Schubert E F. Doping in III–V Semiconductors, Cambridge Studies in Semiconductor Physics and Microelectronic Engineering. Cambridge: Cambridge University Press, 2005, 1

    Google Scholar 

  2. Shockley W, Moll J L. Solubility of flaws in heavily-doped semiconductors. Physical Review, 1960, 119(5): 1480–1482

    Article  CAS  Google Scholar 

  3. Pearton S J, Cho H, Ren F, et al. In: Feenstra R, Myers T, Shur M S, et al., eds. GaN and Related Alloys. Materials Research Society, 2000, 595: W10.6.1–W10.6.10

  4. Wei S-H. Overcoming the doping bottleneck in semiconductors. Computational Materials Science, 2004, 30(3–4): 337–348

    Article  CAS  Google Scholar 

  5. Copel M, Reuter M C, Kaxiras E, et al. Surfactants in epitaxial growth. Physical Review Letters, 1989, 63(6): 632–635

    Article  CAS  Google Scholar 

  6. Rosenfeld G, Servaty R, Teichert C, et al. Layer-by-layer growth of Ag on Ag(111) induced by enhanced nucleation: A model study for surfactant-mediated growth. Physical Review Letters, 1993, 71(6): 895–898

    Article  CAS  Google Scholar 

  7. Meyer J A, Vrijmoeth J, van der Vegt H A, et al. Importance of the additional step-edge barrier in determining film morphology during epitaxial growth. Physical Review B, 1995, 51(20): 14790–14793

    Article  CAS  Google Scholar 

  8. Pillai M R, Kim S-S, Ho S T, et al. Growth of InxGa1 − x As/GaAs heterostructures using Bi as a surfactant. Journal of Vacuum Science and Technology B, 2000, 18(3): 1232–1236

    Article  CAS  Google Scholar 

  9. Fetzer C M, Lee R T, Shurtleff J K, et al. The use of a surfactant (Sb) to induce triple period ordering in GaInP. Applied Physics Letters, 2000, 76(11): 1440–1442

    Article  CAS  Google Scholar 

  10. Chapman D C, Howard A D, Stringfellow G B. Zn enhancement during surfactant-mediated growth of GaInP and GaP. Journal of Crystal Growth, 2006, 287(2): 647–651

    Article  CAS  Google Scholar 

  11. Howard A D, Chapman D C, Stringfellow G B. Effects of surfactants Sb and Bi on the incorporation of zinc and carbon in III/V materials grown by organometallic vapor-phase epitaxy. Journal of Applied Physics, 2006, 100(4): 044904 (8 pages)

    Article  Google Scholar 

  12. Zhu J Y, Liu F, Stringfellow G B. Dual-surfactant effect to enhance p-type doping in III-V semiconductor thin films. Physical Review Letters, 2008, 101(19): 196103 (4 pages)

    Article  CAS  Google Scholar 

  13. Zhu J, Liu F, Stringfellow G B. Enhanced cation-substituted ptype doping in GaP from dual surfactant effects. Journal of Crystal Growth, 2010, 312(2): 174–179

    Article  CAS  Google Scholar 

  14. Zhang L, Yan Y, Wei S-H. Enhancing dopant solubility via epitaxial surfactant growth. Physical Review B, 2009, 80(7):073305 (4 pages)

    Article  Google Scholar 

  15. Sadigh B, Lenosky T J, Caturla M-J, et al. Large enhancement of boron solubility in silicon due to biaxial stress. Applied Physics Letters, 2002, 80(25): 4738–4740

    Article  CAS  Google Scholar 

  16. Zhu J, Liu F, Stringfellow G B, et al. Strain-enhanced doping in semiconductors: Effects of dopant size and charge state. Physical Review Letters, 2010, 105(19): 195503 (4 pages)

    Article  Google Scholar 

  17. Zhu J, Wei S-H. Tuning doping site and type by strain: Enhanced p-type doping in Li doped ZnO. Solid State Communications, 2011, 151(20): 1437–1439

    Article  CAS  Google Scholar 

  18. Ahn C, Bennett N, Dunham S T, et al. Stress effects on impurity solubility in crystalline materials: A general model and densityfunctional calculations for dopants in silicon. Physical Review B, 2009, 79(7): 073201 (4 pages)

    Article  Google Scholar 

  19. Bennett N S, Smith A J, Gwilliam R M, et al. Antimony for n-type metal oxide semiconductor ultrashallow junctions in strained Si: A superior dopant to arsenic? Journal of Vacuum Science and Technology B, 2008, 26(1): 391–395

    Article  CAS  Google Scholar 

  20. Kahwaji S, Roorda S, Xiao S Q F, et al. The influence of a Pb surfactant on Mn delta-doped layers on Si(001). APS March Meeting, 2010, 55(2): H25.6

    Google Scholar 

  21. Sato T, Mitsuhara M, Iga R, et al. Influence of Sb surfactant on carrier concentration in heavily Zn-doped InGaAs grown by metalorganic vapor phase epitaxy. Journal of Crystal Growth, 2011, 315(1): 64–67

    Article  CAS  Google Scholar 

  22. Lu G-H, Liu F. Towards quantitative understanding of formation and stability of Ge hut islands on Si(001). Physical Review Letters, 2005, 94(17): 176103 (4 pages)

    Article  Google Scholar 

  23. Chen G, Cheng S F, Tobin D J, et al. Direct evidence for a hydrogen-stabilized surface indium phosphide (001)-(2×1): reconstruction. Physical Review B, 2003, 68(12): 121303 (R) (3 pages)

    Article  Google Scholar 

  24. Larsen P K, Chadi D J. Surface structure of As-stabilized GaAs(001): 2×4, c(2×8), and domain structures. Physical Review B, 1988, 37(14): 8282–8288

    Article  CAS  Google Scholar 

  25. McCluskey M D, Haller E E, Walker J, et al. Spectroscopy of hydrogen-related complexes in GaP:Zn. Applied Physics Letters, 1994, 65(17): 2191–2192

    Article  CAS  Google Scholar 

  26. Rao E V K, Theys B, Gottesman Y, et al. In: Proceedings of the 11th International Conference on Indium Phosphide and Related Materials. New York: IEEE, 1999

    Google Scholar 

  27. Chen C H, Stockman S A, Peanasky M J, et al. In: Stringfellow G B, Craford MG, eds. Semiconductors and Semimetals. New York: Academic Press, 1997, 48: 122

    Google Scholar 

  28. Jiao W, et al. Electronic Materials Conference 2011

  29. Van Vechten J A, Phillips J C. New set of tetrahedral covalent radii. Physical Review B, 1970, 2(6): 2160–2167

    Article  Google Scholar 

  30. Duclere J-R, Novotny M, Meaney A, et al. Properties of Li-, Pand N-doped ZnO thin films prepared by pulsed laser deposition. Superlattices and Microstructures, 2005, 38(4–6): 397–405

    Article  CAS  Google Scholar 

  31. Oral A Y, Bahsi Z B, Aslan M H. Microstructure and optical properties of nanocrystalline ZnO and ZnO:(Li or Al) thin films. Applied Surface Science, 2007, 253(10): 4593–4598

    Article  CAS  Google Scholar 

  32. Majumdar S, Banerji P. Effect of Li incorporation on the structural and optical properties of ZnO. Superlattices and Microstructures, 2009, 45(6): 583–589

    Article  CAS  Google Scholar 

  33. Poizot P, Laruelle S, Grugeon S, et al. Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries. Nature, 2000, 407(6803): 496–499

    Article  CAS  Google Scholar 

  34. Hu Y-S, Guo Y-G, Sigle W, et al. Electrochemical lithiation synthesis of nanoporous materials with superior catalytic and capacitive activity. Nature Materials, 2006, 5(9): 713–717

    Article  CAS  Google Scholar 

  35. Koudriachova M V, Harrison N M, de Leeuw S W. Effect of diffusion on lithium intercalation in titanium dioxide. Physical Review Letters, 2001, 86(7): 1275–1278

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junyi Zhu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhu, J., Wei, SH. Overcoming doping bottleneck by using surfactant and strain. Front. Mater. Sci. 5, 335–341 (2011). https://doi.org/10.1007/s11706-011-0148-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11706-011-0148-y

Keywords

Navigation