Skip to main content
Log in

Bio-inspired supramolecular self-assembly towards soft nanomaterials

  • Review Article
  • Published:
Frontiers of Materials Science Aims and scope Submit manuscript

Abstract

Supramolecular self-assembly has proven to be a reliable approach towards versatile nanomaterials based on multiple weak intermolecular forces. In this review, the development of bio-inspired supramolecular self-assembly into soft materials and their applications are summarized. Molecular systems used in bio-inspired “bottom-up self-assembly” involve small organic molecules, peptides or proteins, nucleic acids, and viruses. Self-assembled soft nanomaterials have been exploited in various applications such as inorganic nanomaterial synthesis, drug or gene delivery, tissue engineering, and so on.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lehn J M. Supramolecular chemistry scope and perspectives — Molecules supermolecules molecular devices. Chemica Scripta, 1988, 28(3): 237–262

    CAS  Google Scholar 

  2. Lehn J M. Supramolecular chemistry: from molecular information towards self-organization and complex matter. Reports on Progress in Physics, 2004, 67(3): 249–265

    Article  Google Scholar 

  3. Lehn J M. Toward self-organization and complex matter. Science, 2002, 295(5564): 2400–2403

    Article  CAS  Google Scholar 

  4. Granja J R, Ghadiri M R. Self-assembling peptide nanotubes. NMR in Supramolecular Chemistry, 1999, 526: 61–66

    CAS  Google Scholar 

  5. Lawrence D S, Jiang T, Levett M. Self-assembling supramolecular complexes. Chemical Reviews, 1995, 95(6): 2229–2260

    Article  CAS  Google Scholar 

  6. Lehn J M. Perspectives in supramolecular chemistry — From molecular recognition towards molecular information-processing and self-organization. Angewandte Chemie International Edition in English, 1990, 29(11): 1304–1319

    Article  Google Scholar 

  7. Prins L J, Reinhoudt D N, Timmerman P. Noncovalent synthesis using hydrogen bonding. Angewandte Chemie International Edition, 2001, 40(13): 2382–2426

    Article  CAS  Google Scholar 

  8. Whitesides G M, Mathias J P, Seto C T. Molecular self-assembly and nanochemistry — A chemical strategy for the synthesis of nanostructures. Science, 1991, 254(5036): 1312–1319

    Article  CAS  Google Scholar 

  9. Whitesides G M, Simanek E E, Mathias J P, et al. Noncovalent synthesis — Using physical-organic chemistry to make aggregates. Accounts of Chemical Research, 1995, 28(1): 37–44

    Article  CAS  Google Scholar 

  10. Rosemeyer H. Nucleolipids: natural occurrence, synthesis, molecular recognition, and supramolecular assemblies as potential precursors of life and bioorganic materials. Chemistry & Biodiversity, 2005, 2(8): 977–1062

    Article  CAS  Google Scholar 

  11. Itojima Y, Ogawa Y, Tsuno K, et al. Spontaneous formation of helical structures from phospholipid-nucleoside conjugates. Biochemistry, 1992, 31(20): 4757–4765

    Article  CAS  Google Scholar 

  12. Bombelli F B, Berti D, Milani S, et al. Collective headgroup conformational transition in twisted micellar superstructures. Soft Matter, 2008, 4(5): 1102–1113

    Article  CAS  Google Scholar 

  13. Park S M, Lee Y S, Kim B H. Novel low-molecular-weight hydrogelators based on 2′-deoxyuridine. Chemical Communications, 2003, (23): 2912–2913

  14. Campins N, Dieudonné P, Grinstaff M W, et al. Nanostructured assemblies from nucleotide-based amphiphiles. New Journal of Chemistry, 2007, 31(11): 1928–1934

    Article  CAS  Google Scholar 

  15. Fenniri H, Packiarajan M, Vidale K L, et al. Helical rosette nanotubes: design, self-assembly, and characterization. Journal of the American Chemical Society, 2001, 123(16): 3854–3855

    Article  CAS  Google Scholar 

  16. Fenniri H, Deng B-L, Ribbe A E, et al. Entropically driven selfassembly of multichannel rosette nanotubes. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99(Suppl 2): 6487–6492

    Article  CAS  Google Scholar 

  17. Fenniri H, Deng B L, Ribbe A E. Helical rosette nanotubes with tunable chiroptical properties. Journal of the American Chemical Society, 2002, 124(37): 11064–11072

    Article  CAS  Google Scholar 

  18. Borzsonyi G, Johnson R S, Myles A J, et al. Rosette nanotubes with 1.4 nm inner diameter from a tricyclic variant of the Lehn-Mascal G∧C base. Chemical Communications, 2010, 46(35): 6527–6529

    Article  CAS  Google Scholar 

  19. Davis J T, Spada G P. Supramolecular architectures generated by self-assembly of guanosine derivatives. Chemical Society Reviews, 2007, 36(2): 296–313

    Article  CAS  Google Scholar 

  20. Davis J T. G-quartets 40 years later: from 5′-GMP to molecular biology and supramolecular chemistry. Angewandte Chemie International Edition, 2004, 43(6): 668–698

    Article  CAS  Google Scholar 

  21. Fragata M, Menikh A, Robert S. Salt-mediated effects in nonionic lipid bilayers constituted of digalactosyldiacylglycerol studied by ftir spectroscopy and molecular modellization. The Journal of Physical Chemistry, 1993, 97(51): 13920–13926

    Article  CAS  Google Scholar 

  22. Zhang L, Rodriguez J, Raez J, et al. Biologically inspired rosette nanotubes and nanocrystalline hydroxyapatite hydrogel nanocomposites as improved bone substitutes. Nanotechnology, 2009, 20(17): 175101 (12 pages)

    Article  CAS  Google Scholar 

  23. Wagner F, Rottem S, Held H D, et al. Ether lipids in the cell membrane of Mycoplasma fermentans. European Journal of Biochemistry, 2000, 267(20): 6276–6286

    Article  CAS  Google Scholar 

  24. Brandenburg K, Richter W, Koch M H J, et al. Characterization of the nonlamellar cubic and HII structures of lipid A from Salmonella enterica serovar Minnesota by X-ray diffraction and freeze-fracture electron microscopy. Chemistry and Physics of Lipids, 1998, 91(1): 53–69

    Article  CAS  Google Scholar 

  25. Fuhrhop J H, Schnieder P, Rosenberg J, et al. The chiral bilayer effect stabilizes micellar fibers. Journal of the American Chemical Society, 1987, 109(11): 3387–3390

    Article  CAS  Google Scholar 

  26. Fuhrhop J H, Schnieder P, Boekema E, et al. Lipid bilayer fibers from diastereomeric and enantiomeric N-octylaldonamides. Journal of the American Chemical Society, 1988, 110(9): 2861–2867

    Article  CAS  Google Scholar 

  27. Fuhrhop J H, Svenson S, Boekema E, et al. Long-lived micellar N-alkylaldonamide fiber gels. Solid-state NMR and electron microscopic studies. Journal of the American Chemical Society, 1990, 112(11): 4301–4312

    Article  Google Scholar 

  28. Fuhrhop J H, Boettcher C. Stereochemistry and curvature effects in supramolecular organization and separation processes of micellar N-alkylaldonamide mixtures. Journal of the American Chemical Society, 1990, 112(5): 1768–1776

    Article  CAS  Google Scholar 

  29. Fuhrhop J H, Blumtritt P, Lehmann C, et al. Supramolecular assemblies, a crystal structure, and a polymer of N-diacetylenic gluconamides. Journal of the American Chemical Society, 1991, 113(19): 7437–7439

    Article  CAS  Google Scholar 

  30. Koning J, Boettcher C, Winkler H, et al. Magic angle (54.7-degrees) gradient and minimal-surfaces in quadruple micellar helices. Journal of the American Chemical Society, 1993, 115(2): 693–700

    Article  Google Scholar 

  31. John G, Masuda M, Okada Y, et al. Nanotube formation from renewable resources via coiled nanofibers. Advanced Materials, 2001, 13(10): 715–718

    Article  CAS  Google Scholar 

  32. John G, Jung J H, Minamikawa H, et al. Morphological control of helical solid bilayers in high-axial-ratio nanostructures through binary self-assembly. Chemistry — A European Journal, 2002, 8(23): 5494–5500

    Article  CAS  Google Scholar 

  33. Jung J H, John G, Masuda M, et al. Self-assembly of a sugar-based gelator in water: Its remarkable diversity in gelation ability and aggregate structure. Langmuir, 2001, 17(23): 7229–7232

    Article  CAS  Google Scholar 

  34. Jung J H, John G, Yoshida K, et al. Self-assembling structures of long-chain phenyl glucoside influenced by the introduction of double bonds. Journal of the American Chemical Society, 2002, 124(36): 10674–10675

    Article  CAS  Google Scholar 

  35. Shimizu T, Masuda M. Stereochemical effect of even-odd connecting links on supramolecular assemblies made of 1-glucosamide bolaamphiphiles. Journal of the American Chemical Society, 1997, 119(12): 2812–2818

    Article  CAS  Google Scholar 

  36. Nakazawa I, Masuda M, Okada Y, et al. Spontaneous formation of helically twisted fibers from 2-glucosamide bolaamphiphiles: Energy-filtering transmission electron microscopic observation and even-odd effect of connecting bridge. Langmuir, 1999, 15(14): 4757–4764

    Article  CAS  Google Scholar 

  37. Bell P C, Bergsma M, Dolbnya I P, et al. Transfection mediated by gemini surfactants: Engineered escape from the endosomal compartment. Journal of the American Chemical Society, 2003, 125(6): 1551–1558

    Article  CAS  Google Scholar 

  38. Johnsson M, Wagenaar A, Engberts J. Sugar-based gemini surfactant with a vesicle-to-micelle transition at acidic pH and a reversible vesicle flocculation near neutral pH. Journal of the American Chemical Society, 2003, 125(3): 757–760

    Article  CAS  Google Scholar 

  39. Johnsson M, Wagenaar A, Stuart M C A, et al. Sugar-based gemini surfactants with pH-dependent aggregation behavior: Vesicle-to-micelle transition, critical micelle concentration, and vesicle surface charge reversal. Langmuir, 2003, 19(11): 4609–4618

    Article  CAS  Google Scholar 

  40. Johnsson M, Engberts J. Novel sugar-based gemini surfactants: aggregation properties on aqueous solution. Journal of Physical Organic Chemistry, 2004, 17(11): 934–944

    Article  CAS  Google Scholar 

  41. Wasungu L, Scarzello M, van Dam G, et al. Transfection mediated by pH-sensitive sugar-based gemini surfactants; potential for in vivo gene therapy applications. Journal of Molecular Medicine, 2006, 84(9): 774–784

    Article  CAS  Google Scholar 

  42. Wasungu L, Stuart M C A, Scarzello M, et al. Lipoplexes formed from sugar-based gemini surfactants undergo a lamellar-to-micellar phase transition at acidic pH. Evidence for a noninverted membrane-destabilizing hexagonal phase of lipoplexes. Biochimica et Biophysica Acta (BBA) — Biomembranes, 2006, 1758(10): 1677–1684

    CAS  Google Scholar 

  43. Blanzat M, Massip S, Speziale V, et al. First example of helices and tubules in aqueous solution of a new fluorescent catanionic sugar surfactant. Langmuir, 2001, 17(11): 3512–3514

    Article  CAS  Google Scholar 

  44. Blanzat M, Perez E, Rico-Lattes I, et al. Correlation between structure, aggregation behaviour and cellular toxicity of anti-HIV catanionic analogues of galactosylceramide. Chemical Communications, 2003, (2): 244–245

  45. Soussan E, Pasc-Banu A, Consola S, et al. New catanionic triblock amphiphiles: Supramolecular organization of a sugar-derived bolaamphiphile associated with dicarboxylates. Chemphyschem, 2005, 6(12): 2492–2494

    Article  CAS  Google Scholar 

  46. Soussan E, Mille C, Blanzat M, et al. Sugar-derived tricatenar catanionic surfactant: Synthesis, self-assembly properties, and hydrophilic probe encapsulation by vesicles. Langmuir, 2008, 24(6): 2326–2330

    Article  CAS  Google Scholar 

  47. Vivares D, Soussan E, Blanzat M, et al. Sugar-derived tricatenar catanionic surfactant: Self-assembly and aggregation behavior in the cationic-rich side of the system. Langmuir, 2008, 24(17): 9260–9267

    Article  CAS  Google Scholar 

  48. Frankel D A, O’Brien D F. Supramolecular assemblies of diacetylenic aldonamides. Journal of the American Chemical Society, 1991, 113(19): 7436–7437

    Article  CAS  Google Scholar 

  49. Frankel D A, O’Brien D F. Supramolecular assemblies of diacetylenic aldonamides. Journal of the American Chemical Society, 1994, 116(22): 10057–10069

    Article  CAS  Google Scholar 

  50. Hafkamp R J H, Feiters M C, Nolte R J M. Organogels from carbohydrate amphiphiles. The Journal of Organic Chemistry, 1999, 64(2): 412–426

    Article  CAS  Google Scholar 

  51. Kim B S, Hong D J, Bae J, et al. Controlled self-assembly of carbohydrate conjugate rod-coil amphiphiles for supramolecular multivalent ligands. Journal of the American Chemical Society, 2005, 127(46): 16333–16337

    Article  CAS  Google Scholar 

  52. Ryu J H, Lee E, Lim Y B, et al. Carbohydrate-coated supramolecular structures: Transformation of nanofibers into spherical micelles triggered by guest encapsulation. Journal of the American Chemical Society, 2007, 129(15): 4808–4814

    Article  CAS  Google Scholar 

  53. Chen C-K, Lin S-C, Ho R-M, et al. Kinetically controlled selfassembled superstructures from semicrystalline chiral block copolymers. Macromolecules, 2010, 43(18): 7752–7758

    Article  CAS  Google Scholar 

  54. Lin T F, Ho R M, Sung C H, et al. Helical morphologies of thermotropic liquid-crystalline chiral Schiff-based rod-coil amphiphiles. Chemistry of Materials, 2006, 18(23): 5510–5519

    Article  CAS  Google Scholar 

  55. Sung C H, Kung L R, Hsu C S, et al. Induced twisting in the selfassembly of chiral Schiff-based rod-coil amphiphiles. Chemistry of Materials, 2006, 18(2): 352–359

    Article  CAS  Google Scholar 

  56. Lin T F, Ho R M, Sung C H, et al. Variation of helical twisting power in self-assembled sugar-appended Schiff base chiral rodcoil amphiphiles. Chemistry of Materials, 2008, 20(4): 1404–1409

    Article  CAS  Google Scholar 

  57. Avalos M, Babiano R, Cintas P, et al. A family of hydrogels based on ureido-linked aminopolyol-derived amphiphiles and bolaamphiphiles: Synthesis, gelation under thermal and sonochemical stimuli, and mesomorphic characterization. Chemistry — A European Journal, 2008, 14(18): 5656–5669

    Article  CAS  Google Scholar 

  58. Jang D, Lee H-Y, Park M, et al. Nano- and microstructure fabrication by using a three-component system. Chemistry — A European Journal, 2010, 16(16): 4836–4842

    CAS  Google Scholar 

  59. Amanokura N, Yoza K, Shinmori H, et al. New sugar-based gelators bearing a p-nitrophenyl chromophore: remarkably large influence of a sugar structure on the gelation ability. Journal of the Chemical Society, Perkin Transactions 2, 1998, (12): 2585–2591

  60. Yoza K, Amanokura N, Ono Y, et al. Sugar-integrated gelators of organic solvents — Their remarkable diversity in gelation ability and aggregate structure. Chemistry — A European Journal, 1999, 5(9): 2722–2729

    Article  CAS  Google Scholar 

  61. Gronwald O, Shinkai S. ’Bifunctional’ sugar-integrated gelators for organic solvents and water—on the role of nitro-substituents in 1-O-methyl-4,6-O-(nitrobenzylidene)-monosaccharides for the improvement of gelation ability. Journal of the Chemical Society, Perkin Transactions 2, 2001, (10): 1933–1937

  62. Gronwald O, Shinkai S. Sugar-integrated gelators of organic solvents. Chemistry — A European Journal, 2001, 7(20): 4328–4334

    Article  CAS  Google Scholar 

  63. Sakurai K, Jeong Y, Koumoto K, et al. Supramolecular structure of a sugar-appended organogelator explored with synchrotron X-ray small-angle scattering. Langmuir, 2003, 19(20): 8211–8217

    Article  CAS  Google Scholar 

  64. Kiyonaka S, Shinkai S, Hamachi H. Combinatorial library of low molecular-weight organo- and hydrogelators based on glycosylated amino acid derivatives by solid-phase synthesis. Chemistry — A European Journal, 2003, 9(4): 976–983

    Article  CAS  Google Scholar 

  65. Hamley I W. Peptide fibrillization. Angewandte Chemie International Edition, 2007, 46(43): 8128–8147

    Article  CAS  Google Scholar 

  66. Zhang S G. Fabrication of novel biomaterials through molecular self-assembly. Nature Biotechnology, 2003, 21(10): 1171–1178

    Article  CAS  Google Scholar 

  67. König H M, Kilbinger A F M. Learning from nature: β-sheet-mimicking copolymers get organized. Angewandte Chemie International Edition, 2007, 46(44): 8334–8340

    Article  CAS  Google Scholar 

  68. Sarikaya M, Tamerler C, Jen A K Y, et al. Molecular biomimetics: nanotechnology through biology. Nature Materials, 2003, 2(9): 577–585

    Article  CAS  Google Scholar 

  69. Hersel U, Dahmen C, Kessler H. RGD modified polymers: biomaterials for stimulated cell adhesion and beyond. Biomaterials, 2003, 24(24): 4385–4415

    Article  CAS  Google Scholar 

  70. Zhang S G, Holmes T, Lockshin C, et al. Spontaneous assembly of a self-complementary oligopeptide to form a stable macroscopic membrane. Proceedings of the National Academy of Sciences of the United States of America, 1993, 90(8): 3334–3338

    Article  CAS  Google Scholar 

  71. Holmes T C, de Lacalle S, Su X, et al. Extensive neurite outgrowth and active synapse formation on self-assembling peptide scaffolds. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97(12): 6728–6733

    Article  CAS  Google Scholar 

  72. Vauthey S, Santoso S, Gong H Y, et al. Molecular self-assembly of surfactant-like peptides to form nanotubes and nanovesicles. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99(8): 5355–5360

    Article  CAS  Google Scholar 

  73. Santoso S, Hwang W, Hartman H, et al. Self-assembly of surfactant-like peptides with variable glycine tails to form nanotubes and nanovesicles. Nano Letters, 2002, 2(7): 687–691

    Article  CAS  Google Scholar 

  74. Aggeli A, Bell M, Boden N, et al. Responsive gels formed by the spontaneous self-assembly of peptides into polymeric β-sheet tapes. Nature, 1997, 386(6622): 259–262

    Article  CAS  Google Scholar 

  75. Aggeli A, Bell M, Boden N, et al. Engineering of peptide β-sheet nanotapes. Journal of Materials Chemistry, 1997, 7(7): 1135–1145

    Article  CAS  Google Scholar 

  76. Aggeli A, Nyrkova I A, Bell M, et al. Hierarchical self-assembly of chiral rod-like molecules as a model for peptide β-sheet tapes, ribbons, fibrils, and fibers. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98(21): 11857–11862

    Article  CAS  Google Scholar 

  77. Clark T D, Buriak J M, Kobayashi K, et al. Cylindrical β-sheet peptide assemblies. Journal of the American Chemical Society, 1998, 120(35): 8949–8962

    Article  CAS  Google Scholar 

  78. Hartgerink J D, Clark T D, Ghadiri M R. Peptide nanotubes and beyond. Chemistry — A European Journal, 1998, 4(8): 1367–1372

    Article  CAS  Google Scholar 

  79. Deming T J. Polypeptide materials: New synthetic methods and applications. Advanced Materials, 1997, 9(4): 299–311

    Article  CAS  Google Scholar 

  80. Deming T J. Facile synthesis of block copolypeptides of defined architecture. Nature, 1997, 390(6658): 386–389

    Article  CAS  Google Scholar 

  81. Gauba V, Hartgerink J D. Self-assembled heterotrimeric collagen triple helices directed through electrostatic interactions. Journal of the American Chemical Society, 2007, 129(9): 2683–2690

    Article  CAS  Google Scholar 

  82. Dong H, Paramonov S E, Aulisa L, et al. Self-assembly of multidomain peptides: Balancing molecular frustration controls conformation and nanostructure. Journal of the American Chemical Society, 2007, 129(41): 12468–12472

    Article  CAS  Google Scholar 

  83. Gauba V, Hartgerink J D. Surprisingly high stability of collagen ABC heterotrimer: Evaluation of side chain charge pairs. Journal of the American Chemical Society, 2007, 129(48): 15034–15041

    Article  CAS  Google Scholar 

  84. Dong H, Paramonov S E, Hartgerink J D. Self-assembly of α-helical coiled coil nanofibers. Journal of the American Chemical Society, 2008, 130(41): 13691–13695

    Article  CAS  Google Scholar 

  85. Russell L E, Fallas J A, Hartgerink J D. Selective assembly of a high stability AAB collagen heterotrimer. Journal of the American Chemical Society, 2010, 132(10): 3242–3243

    Article  CAS  Google Scholar 

  86. Pomerantz W C, Yuwono V M, Pizzey C L, et al. Nanofibers and lyotropic liquid crystals from a class of self-assembling β-peptides. Angewandte Chemie International Edition, 2008, 47(7): 1241–1244

    Article  CAS  Google Scholar 

  87. Schneider J P, Pochan D J, Ozbas B, et al. Responsive hydrogels from the intramolecular folding and self-assembly of a designed peptide. Journal of the American Chemical Society, 2002, 124(50): 15030–15037

    Article  CAS  Google Scholar 

  88. Salick D A, Kretsinger J K, Pochan D J, et al. Inherent antibacterial activity of a peptide-based β-hairpin hydrogel. Journal of the American Chemical Society, 2007, 129(47): 14793–14799

    Article  CAS  Google Scholar 

  89. Nagarkar R P, Hule R A, Pochan D J, et al. De novo design of strand-swapped β-hairpin hydrogels. Journal of the American Chemical Society, 2008, 130(13): 4466–4474

    Article  CAS  Google Scholar 

  90. Pochan D J, Schneider J P, Kretsinger J, et al. Thermally reversible hydrogels via intramolecular folding and consequent self-assembly of a de novo designed peptide. Journal of the American Chemical Society, 2003, 125(39): 11802–11803

    Article  CAS  Google Scholar 

  91. Zhao X B, Pan F, Lu J R. Recent development of peptide self-assembly. Progress in Natural Science, 2008, 18(6): 653–660

    Article  CAS  Google Scholar 

  92. Wang M, Hou W, Mi C C, et al. Immunoassay of goat antihuman immunoglobulin G antibody based on luminescence resonance energy transfer between near-infrared responsive NaYF4:Yb, Er upconversion fluorescent nanoparticles and gold nanoparticles. Analytical Chemistry, 2009, 81(21): 8783–8789

    Article  CAS  Google Scholar 

  93. Lim Y B, Lee E, Lee M. Controlled bioactive nanostructures from self-assembly of peptide building blocks. Angewandte Chemie International Edition, 2007, 46(47): 9011–9014

    Article  CAS  Google Scholar 

  94. Yoon Y R, Lim Y B, Lee E, et al. Self-assembly of a peptide rodcoil: a polyproline rod and a cell-penetrating peptide Tat coil. Chemical Communications, 2008, (16): 1892–1894

  95. Yu Y C, Berndt P, Tirrell M, et al. Self-assembling amphiphiles for construction of protein molecular architecture. Journal of the American Chemical Society, 1996, 118(50): 12515–12520

    Article  CAS  Google Scholar 

  96. Deng M L, Yu D F, Hou Y B, et al. Self-assembly of peptide-amphiphile C12-Aβ(11–17) into nanofibrils. The Journal of Physical Chemistry B, 2009, 113(25): 8539–8544

    Article  CAS  Google Scholar 

  97. Zhao X B, Pan F, Xu H, et al. Molecular self-assembly and applications of designer peptide amphiphiles. Chemical Society Reviews, 2010, 39(9): 3480–3498

    Article  CAS  Google Scholar 

  98. Berndt P, Fields G B, Tirrell M. Synthetic lipidation of peptides and amino-acids — Monolayer structure and properties. Journal of the American Chemical Society, 1995, 117(37): 9515–9522

    Article  CAS  Google Scholar 

  99. Lee K C, Carlson P A, Goldstein A S, et al. Protection of a decapeptide from proteolytic cleavage by lipidation and self-assembly into high-axial-ratio microstructures: A kinetic and structural study. Langmuir, 1999, 15(17): 5500–5508

    Article  CAS  Google Scholar 

  100. Ho-Wook J, Paramonov S E, Hartgerink J D. Biomimetic self-assembled nanofibers. Soft Matter, 2006, 2(3): 177–81

    Article  CAS  Google Scholar 

  101. Hartgerink J D, Beniash E, Stupp S I. Self-assembly and mineralization of peptide-amphiphile nanofibers. Science, 2001, 294(5547): 1684–1688

    Article  CAS  Google Scholar 

  102. Hartgerink J D, Beniash E, Stupp S I. Peptide-amphiphile nanofibers: A versatile scaffold for the preparation of self-assembling materials. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99(8): 5133–5138

    Article  CAS  Google Scholar 

  103. Claussen R C, Rabatic BM, Stupp S I. Aqueous self-assembly of unsymmetric peptide bolaamphiphiles into nanofibers with hydrophilic cores and surfaces. Journal of the American Chemical Society, 2003, 125(42): 12680–12681

    Article  CAS  Google Scholar 

  104. Niece K L, Hartgerink J D, Donners J, et al. Self-assembly combining two bioactive peptide-amphiphile molecules into nanofibers by electrostatic attraction. Journal of the American Chemical Society, 2003, 125(24): 7146–7147

    Article  CAS  Google Scholar 

  105. Behanna H A, Donners J, Gordon A C, et al. Coassembly of amphiphiles with opposite peptide polarities into nanofibers. Journal of the American Chemical Society, 2005, 127(4): 1193–1200

    Article  CAS  Google Scholar 

  106. Tovar J D, Claussen R C, Stupp S I. Probing the interior of peptide amphiphile supramolecular aggregates. Journal of the American Chemical Society, 2005, 127(20): 7337–7345

    Article  CAS  Google Scholar 

  107. Cui H, Muraoka T, Cheetham A G, et al. Self-assembly of giant peptide nanobelts. Nano Letters, 2009, 9(3): 945–951

    Article  CAS  Google Scholar 

  108. Pashuck E T, Stupp S I. Direct observation of morphological tranformation from twisted ribbons into helical ribbons. Journal of the American Chemical Society, 2010, 132(26): 8819–8821

    Article  CAS  Google Scholar 

  109. Löwik D W P M, Linhardt J G, Adams P J H M, et al. Noncovalent stabilization of a β-hairpin peptide into liposomes. Organic & Biomolecular Chemistry, 2003, 1(11): 1827–1829

    Article  CAS  Google Scholar 

  110. Löwik D W P M, van Hest J C M. Peptide based amphiphiles. Chemical Society Reviews, 2004, 33(4): 234–245

    Article  CAS  Google Scholar 

  111. Meijer J T, Henckens M, Minten I J, et al. Disassembling peptide-based fibres by switching the hydrophobic-hydrophilic balance. Soft Matter, 2007, 3(9): 1135–1137

    Article  CAS  Google Scholar 

  112. Paramonov S E, Jun H W, Hartgerink J D. Self-assembly of peptide-amphiphile nanofibers: The roles of hydrogen bonding and amphiphilic packing. Journal of the American Chemical Society, 2006, 128(22): 7291–7298

    Article  CAS  Google Scholar 

  113. Kwon S, Jeon A, Yoo S H, et al. Unprecedented molecular architectures by the controlled self-assembly of a β-peptide foldamer. Angewandte Chemie International Edition, 2010, 122(44): 8408–8412

    Google Scholar 

  114. Seeman N C. Nucleic acid junctions and lattices. Journal of Theoretical Biology, 1982, 99(2): 237–247

    Article  CAS  Google Scholar 

  115. Winfree E, Liu F R, Wenzler L A, et al. Design and self-assembly of two-dimensional DNA crystals. Nature, 1998, 394(6693): 539–544

    Article  CAS  Google Scholar 

  116. Yan H, Park S H, Finkelstein G, et al. DNA-templated self-assembly of protein arrays and highly conductive nanowires. Science, 2003, 301(5641): 1882–1884

    Article  CAS  Google Scholar 

  117. Lin C, Liu Y, Yan H. Designer DNA nanoarchitectures. Biochemistry, 2009, 48(8): 1663–1674

    Article  CAS  Google Scholar 

  118. Seeman N C, Wang H, Qi J, et al. DNA nanotechnology and topology. Biological Structure and Dynamics, 1996, 2: 319–339

    CAS  Google Scholar 

  119. Seeman N C. The design and engineering of nucleic acid nanoscale assemblies. Current Opinion in Structural Biology, 1996, 6(4): 519–526

    Article  CAS  Google Scholar 

  120. Seeman N C. DNA nanotechnology: Novel DNA constructions. Annual Review of Biophysics and Biomolecular Structure, 1998, 27: 225–248

    Article  CAS  Google Scholar 

  121. Seeman N C. DNA engineering and its application to nanotechnology. Trends in Biotechnology, 1999, 17(11): 437–443

    Article  CAS  Google Scholar 

  122. Seeman N C, Liu F, Wenzler L A, et al. Design and modification of two dimensional DNA arrays. Biophysical Journal, 1999, 76(1): A152–A152

    Google Scholar 

  123. Yin P, Hariadi R F, Sahu S, et al. Programming DNA tube circumferences. Science, 2008, 321(5890): 824–826

    Article  CAS  Google Scholar 

  124. LaBean T H. Nanotechnology: Another dimension for DNA art. Nature, 2009, 459(7245): 331–332

    Article  CAS  Google Scholar 

  125. Hansen M N, Zhang A M, Rangnekar A, et al. Weave tile architecture construction strategy for DNA nanotechnology. Journal of the American Chemical Society, 2010, 132(41): 14481–14486

    Article  CAS  Google Scholar 

  126. Yan H. Nucleic acid nanotechnology. Science, 2004, 306(5704): 2048–2049

    Article  CAS  Google Scholar 

  127. Park S H, Yin P, Liu Y, et al. Programmable DNA selfassemblies for nanoscale organization of ligands and proteins. Nano Letters, 2005, 5(4): 729–733

    Article  CAS  Google Scholar 

  128. Liu Y, Ke Y G, Yan H. Self-assembly of symmetric finite-size DNA nanoarrays. Journal of the American Chemical Society, 2005, 127(49): 17140–17141

    Article  CAS  Google Scholar 

  129. Liu Y, Yan H. Designer curvature. Science, 2009, 325(5941): 685–686

    Article  CAS  Google Scholar 

  130. Wang X R, Holowka E, Deming T J, et al. Peptide-based inorganic nanocomposite via self-assembly of synthetic polypeptide. Abstracts of Papers of the American Chemical Society, 2008, 236: 435

    Google Scholar 

  131. Liu D, Wang M S, Deng Z X, et al. Tensegrity: Construction of rigid DNA triangles with flexible four-arm DNA junctions. Journal of the American Chemical Society, 2004, 126(8): 2324–2325

    Article  CAS  Google Scholar 

  132. He Y, Ye T, Su M, et al. Hierarchical self-assembly of DNA into symmetric supramolecular polyhedra. Nature, 2008, 452(7184): 198–201

    Article  CAS  Google Scholar 

  133. Zhang C, Su M, He Y, et al. Conformational flexibility facilitates self-assembly of complex DNA nanostructures. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(31): 10665–10669

    Article  CAS  Google Scholar 

  134. Zheng J P, Birktoft J J, Chen Y, et al. From molecular to macroscopic via the rational design of a self-assembled 3D DNA crystal. Nature, 2009, 461(7260): 74–77

    Article  CAS  Google Scholar 

  135. Wang F, Mao C B. Nanotubes connected to a micro-tank: hybrid micro-/nano-silica architectures transcribed from living bacteria as bioreactors. Chemical Communications, 2009, (10): 1222–1224

  136. Aldaye F A, Lo P K, Karam P, et al. Modular construction of DNA nanotubes of tunable geometry and single- or double-stranded character. Nature Nanotechnology, 2009, 4(6): 349–352

    Article  CAS  Google Scholar 

  137. Nuraje N, Mohammed S, Yang L L, et al. Biomineralization nanolithography: combination of bottom-up and top-down fabrication to grow arrays of monodisperse gold nanoparticles along peptide lines. Angewandte Chemie International Edition, 2009, 48(14): 2546–2548

    Article  CAS  Google Scholar 

  138. Holowka E P, Deming T J. Synthesis and cross linking of L-DOPA containing polypeptide vesicles. Macromolecular Bioscience, 10(5): 496–502

  139. Lo P K, Altvater F, Sleiman H F. Templated synthesis of DNA nanotubes with controlled, predetermined lengths. Journal of the American Chemical Society, 2010, 132(30): 10212–10214

    Article  CAS  Google Scholar 

  140. Mao C B, Liu A H, Cao B R. Virus-based chemical and biological sensing. Angewandte Chemie International Edition, 2009, 48(37): 6790–6810

    Article  CAS  Google Scholar 

  141. Mao C B, Flynn C E, Hayhurst A, et al. Viral assembly of oriented quantum dot nanowires. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100(12): 6946–6951

    Article  CAS  Google Scholar 

  142. Mao C B, Solis D J, Reiss B D, et al. Virus-based toolkit for the directed synthesis of magnetic and semiconducting nanowires. Science, 2004, 303(5655): 213–217

    Article  CAS  Google Scholar 

  143. Balci S, Noda K, Bittner A M, et al. Self-assembly of metal-virus nanodumbbells. Angewandte Chemie International Edition, 2007, 46(17): 3149–3151

    Article  CAS  Google Scholar 

  144. Vega R A, Maspoch D, Salaita K, et al. Nanoarrays of single virus particles. Angewandte Chemie International Edition, 2005, 44(37): 6013–6015

    Article  CAS  Google Scholar 

  145. Carrera M R A, Kaufmann G F, Mee J M, et al. Treating cocaine addiction with viruses. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101(28): 10416–10421

    Article  CAS  Google Scholar 

  146. Kovacs E W, Hooker J M, Romanini D W, et al. Dual-surface-modified bacteriophage MS2 as an ideal scaffold for a viral capsid-based drug delivery system. Bioconjugate Chemistry, 2007, 18(4): 1140–1147

    Article  CAS  Google Scholar 

  147. Souza G R, Christianson D R, Staquicini F I, et al. Networks of gold nanoparticles and bacteriophage as biological sensors and cell-targeting agents. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103(5): 1215–1220

    Article  CAS  Google Scholar 

  148. Goicochea N L, De M, Rotello V M, et al. Core-like particles of an enveloped animal virus can self-assemble efficiently on artificial templates. Nano Letters, 2007, 7(8): 2281–2290

    Article  CAS  Google Scholar 

  149. Petrenko V A. Evolution of phage display: from bioactive peptides to bioselective nanomaterials. Expert Opinion on Drug Delivery, 2008, 5(8): 825–836

    Article  CAS  Google Scholar 

  150. Kostiainen MA, Kasyutich O, Cornelissen J, et al. Self-assembly and optically triggered disassembly of hierarchical dendron-virus complexes. Nature Chemistry, 2010, 2(5): 394–399

    Article  CAS  Google Scholar 

  151. Smith G P, Petrenko V A. Phage display. Chemical Reviews, 1997, 97(2): 391–410

    Article  CAS  Google Scholar 

  152. Liu A H, Abbineni G, Mao C B. Nanocomposite films assembled from genetically engineered filamentous viruses and gold nanoparticles: nanoarchitecture- and humidity-tunable surface plasmon resonance spectra. Advanced Materials, 2009, 21(9): 1001–1005

    Article  CAS  Google Scholar 

  153. Ngweniform P, Abbineni G, Cao B R, et al. Self-assembly of drug-loaded liposomes on genetically engineered target-recognizing M13 phage: a novel nanocarrier for targeted drug delivery. Small, 2009, 5(17): 1963–1969

    Article  CAS  Google Scholar 

  154. Chen C L, Rosi N L. Peptide-based methods for the preparation of nanostructured inorganic materials. Angewandte Chemie International Edition, 2010, 49(11): 1924–1942

    CAS  Google Scholar 

  155. Djalali R, Chen Y, Matsui H. Au nanowire fabrication from sequenced histidine-rich peptide. Journal of the American Chemical Society, 2002, 124(46): 13660–13661

    Article  CAS  Google Scholar 

  156. Banerjee I A, Yu L T, Matsui H. Cu nanocrystal growth on peptide nanotubes by biomineralization: Size control of Cu nanocrystals by tuning peptide conformation. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100(25): 14678–14682

    Article  CAS  Google Scholar 

  157. Umetsu M, Mizuta M, Tsumoto K, et al. Bioassisted roomtemperature immobilization and mineralization of zinc oxide — The structural ordering of ZnO nanoparticles into a flower-type morphology. Advanced Materials, 2005, 17(21): 2571–2575

    Article  CAS  Google Scholar 

  158. Jung J H, Ono Y, Hanabusa K, et al. Creation of both right-handed and left-handed silica structures by sol-gel transcription of organogel fibers comprised of chiral diaminocyclohexane derivatives. Journal of the American Chemical Society, 2000, 122(20): 5008–5009

    Article  CAS  Google Scholar 

  159. Sone E D, Zubarev E R, Stupp S I. Semiconductor nanohelices templated by supramolecular ribbons. Angewandte Chemie International Edition, 2002, 41(10): 1705–1709

    Article  CAS  Google Scholar 

  160. Sone E D, Zubarev E R, Stupp S I. Supramolecular templating of single and double nanohelices of cadmium sulfide. Small, 2005, 1(7): 694–697

    Article  CAS  Google Scholar 

  161. Lin Y Y, Qiao Y, Gao C, et al. Tunable one-dimensional helical nanostructures: from supramolecular self-assemblies to silica nanomaterials. Chemistry of Materials, 2010, 22(24): 6711–6717

    Article  CAS  Google Scholar 

  162. Chen C L, Zhang P J, Rosi N L. A new peptide-based method for the design and synthesis of nanoparticle superstructures: Construction of highly ordered gold nanoparticle double helices. Journal of the American Chemical Society, 2008, 130(41): 13555–13557

    Article  CAS  Google Scholar 

  163. Chen C L, Rosi N L. Preparation of unique 1-D nanoparticle superstructures and tailoring their structural features. Journal of the American Chemical Society, 2010, 132(20): 6902–6903

    Article  CAS  Google Scholar 

  164. Lamm MS, Sharma N, Rajagopal K, et al. Laterally spaced linear nanoparticle arrays templated by laminated β-sheet fibrils. Advanced Materials, 2008, 20(3): 447–451

    Article  CAS  Google Scholar 

  165. Chhabra R, Moralez J G, Raez J, et al. One-pot nucleation, growth, morphogenesis, and passivation of 1.4 nm Au nanoparticles on self-assembled rosette nanotubes. Journal of the American Chemical Society, 2010, 132(1): 32–33

    Article  CAS  Google Scholar 

  166. Dreyfus R, Leunissen M E, Sha R, et al. Aggregation-disaggregation transition of DNA-coated colloids: Experiments and theory. Physical Review E: Statistical, Nonlinear, and Soft Matter Physics, 2010, 81(4): 041404 (10 pages)

    Article  CAS  Google Scholar 

  167. Allen T M, Cullis P R. Drug delivery systems: Entering the mainstream. Science, 2004, 303(5665): 1818–1822

    Article  CAS  Google Scholar 

  168. Drummond C J, Fong C. Surfactant self-assembly objects as novel drug delivery vehicles. Current Opinion in Colloid & Interface Science, 1999, 4(6): 449–456

    Article  CAS  Google Scholar 

  169. Hughes G A. Nanostructure-mediated drug delivery. Nanomedicine, 2005, 1(1): 22–30

    CAS  Google Scholar 

  170. Bromberg L. Polymeric micelles in oral chemotherapy. Journal of Controlled Release, 2008, 128(2): 99–112

    Article  CAS  Google Scholar 

  171. Soussan E, Cassel S, Blanzat M, et al. Drug delivery by soft matter: matrix and vesicular carriers. Angewandte Chemie International Edition, 2009, 48(2): 274–288

    Article  CAS  Google Scholar 

  172. De Cock L J, De Koker S, De Geest B G, et al. Polymeric multilayer capsules in drug delivery. Angewandte Chemie International Edition, 2010, 49(39): 6954–6973

    Article  CAS  Google Scholar 

  173. Roesler A, Vandermeulen G W M, Klok H-A. Advanced drug delivery devices via self-assembly of amphiphilic block copolymers. Advanced Drug Delivery Reviews, 2001, 53(1): 95–108

    Article  Google Scholar 

  174. Vemula P K, Li J, John G. Enzyme catalysis: Tool to make and break amygdalin hydrogelators from renewable resources: A delivery model for hydrophobic drugs. Journal of the American Chemical Society, 2006, 128(27): 8932–8938

    Article  CAS  Google Scholar 

  175. Bae Y, Fukushima S, Harada A, et al. Design of environment-sensitive supramolecular assemblies for intracellular drug delivery: Polymeric micelles that are responsive to intracellular pH change. Angewandte Chemie International Edition, 2003, 42(38): 4640–4643

    Article  CAS  Google Scholar 

  176. Ngweniform P, Li D, Mao C B. Self-assembly of drug-loaded liposomes on genetically engineered protein nanotubes: a potential anti-cancer drug delivery vector. Soft Matter, 2009, 5(5): 954–956

    Article  CAS  Google Scholar 

  177. Zhang L, Rakotondradany F, Myles A J, et al. Arginine-glycineaspartic acid modified rosette nanotube-hydrogel composites for bone tissue engineering. Biomaterials, 2009, 30(7): 1309–1320

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chuanbin Mao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lin, Y., Mao, C. Bio-inspired supramolecular self-assembly towards soft nanomaterials. Front. Mater. Sci. 5, 247–265 (2011). https://doi.org/10.1007/s11706-011-0141-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11706-011-0141-5

Keywords

Navigation