Skip to main content
Log in

Experimental investigation of the hot cracking mechanism in welds on the microscopic scale

  • Research Article
  • Published:
Frontiers of Materials Science Aims and scope Submit manuscript

Abstract

The results of the accurate experimental observations on binary Al-Si alloys are presented, which clearly demonstrate that the solidification cracking is a result of the accumulation of macroscopic tensile displacement in a microscopic intergranular liquid film of segregates at the final stage of the weld metal solidification. The reconstructed mechanism of crack initiation provides a clear phenomenological interrelation between the cracking susceptibility, parameters of the welding process and properties of the base and filler material. The correspondent numerical model takes into account the effects of displacement accumulation as well as the influence of thermodynamical and thermo-mechanical properties of the welded material. It is successfully applied for development of technological means for elimination of the solidification cracking during welding of aluminium alloys AA6056, such as a multi-beam welding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Singer A R E, Jennings P H. Hot-shortness of the aluminiumsilicon alloys of commercial purity. Journal of the Institute of Metals, 1946, 73: 197–212

    CAS  Google Scholar 

  2. Singer A R E, Jennings P H. Hot-shortness of some aluminiumiron-silicon alloys of high purity. Journal of the Institute of Metals, 1947, 73: 273–284

    CAS  Google Scholar 

  3. Jennings P H, Singer A R E, Pumphrey W I. Hot-shortness of some high-purity alloys in the systems aluminium-copper-silicon and aluminium-magnesium-silicon. Journal of the Institute of Metals, 1948, 74: 227–248

    CAS  Google Scholar 

  4. Pumphrey W I, Lyons J V. Cracking during the casting and welding of the more common binary aluminium alloys. Journal of the Institute of Metals, 1948, 74: 439–455

    CAS  Google Scholar 

  5. Prokhorov N N. Hot Cracking During Welding. Moscow: Mashgiz, 1952 (in Russian)

    Google Scholar 

  6. Bochvar A A, Rykalin N N, Prokhorov N N, et al. The question of “hot” (crystallisation) cracks. Welding Production, 1960, 10: 5–7 (in Russian)

    Google Scholar 

  7. Prokhorov N N. The technological strength of metals while crystallizing during welding. Welding Production, 1962, 9(4): 1–8 (in Russian)

    Google Scholar 

  8. Jonsson M, Karlsson L, Lindgren L E. Thermal stresses, plate motion and hot cracking in butt-welding. Mechanical Behaviour of Materials IV. New York: Pergamon Press, 1984, 273–279

    Google Scholar 

  9. Dike J J, Brooks J A, Li M. Comparison of failure criteria in weld solidification cracking simulations. In: Cerjak H, ed. Mathematical Modelling of Weld Phenomena 4. London: IOM Communications Ltd., 1998, 199–222

    Google Scholar 

  10. Feng Z. A computational analysis of thermal and mechanical conditions for weld metal solidification cracking. Welding in the World, 1994, 33(5): 340–347

    CAS  Google Scholar 

  11. Zaharia T. Dynamic stresses in weld metal hot cracking. Welding Journal, 1994, 73(7): 164s–172s

    Google Scholar 

  12. Dike J J, Brooks J A, Krafcik J S. Finite element modelling and verification of thermal-mechanical behaviour in the weld pool region. In: Smartt H B, Johnson J A, David S A, eds. Trends in Welding Research. ASM International, 1996, 159–164

  13. Feng Z, Zaharia T, David S A. On the thermomechanical conditions for weld metal solidification cracking. In: Cerjak H, ed. Mathematical Modelling of Weld Phenomena 3, 1996, 114–147

  14. Feng Z, Zaharia T, David S A. Thermal stress development in a nickel based superalloy during weldability test. Welding Journal, 1997, 76(11): 470–483

    Google Scholar 

  15. Makhnenko V I, Velikoivanenko E A, Rozynka G F, et al. A computer program for prediction the zones with the risk of formation of hot cracks in welding with deep penetration. The Paton Welding Journal, 1998, 10(2): 57–65

    Google Scholar 

  16. Weise S. Heißrißbildung beim Laserstrahlschweißen von Baustählen. Bremen: BIAS-Verlag, 1998 (in German)

    Google Scholar 

  17. Herold H, Streitenberger M, Pchennikov A. Modelling of the PRV-test to examine the origin of different hot cracking types. In: Cerjak H, ed. Mathematical Modelling of Weld Phenomena 5. London: IOM Communications Ltd., 2001, 783–792

    Google Scholar 

  18. Shibahara M, Serizawa H, Murakawa H. Finite element method for hot cracking analysis under welding using temperature dependent interface element. In: Sahm P R, et al., eds. Modelling of Casting, Welding and Advanced Solidification Processes IX. Aachen: Shaker-Verlag, 2000, 844–851

    Google Scholar 

  19. Shibahara M, Serizawa H, Murakawa H. Finite element method for hot cracking analysis using temperature dependent interface element. In: Cerjak H, ed. Mathematical Modelling of Weld Phenomena 5. London: IOM Communications Ltd., 2001, 253–267

    Google Scholar 

  20. Bergmann H W, Hilbinger R M. Numerical simulation of centre line hot cracks in laser beam welding of aluminium close to the sheet edge. In: Cerjak H, ed. Mathematical Modelling of Weld Phenomena 4. London: IOM Communications Ltd., 1998, 658–668

    Google Scholar 

  21. Hilbinger R M, Bergmann H W, Köhler W, et al. Considering of dynamic mechanical boundary conditions in the characterisation of a hot cracking test by means of numerical simulation. In: Cerjak H, ed. Mathematical Modelling of Weld Phenomena 5. London: IOM Communications Ltd., 2001, 847–862

    Google Scholar 

  22. Hilbinger R M. Heißrissbildung beim Schweißen von Aluminium in Blechrandlage, Universitaet Bayreuth, Bayreuth, 2000 (in German)

    Google Scholar 

  23. Pellini W S. Strain theory of hot tearing. Foundry, 1952, 80: 125–199

    Google Scholar 

  24. Plochikhine V, Prikhodovsky A, Zoch H-W. Zum Mechanismus der Heißrissbildung beim Schweißen von Al-Legierungen. H:arterei-Technische Mitteilungen, 2003, 58(6): 357–362 (in German)

    CAS  Google Scholar 

  25. Ploshikhin V, Prikhodovsky A, Ilin A, et al. Mechanical-Metallurgical approach for prediction of solidification cracking in welds. In: Cerjak H, ed. Mathematical Modelling of Weld Phenomena 8. London: IOM Communications Ltd., 87–104

  26. Saunders N, Miodownik A P. CALPHAD (Calculation of Phase Diagrams): A Comprehensive Guide (Pergamon Materials) Series Vol. 1. Elsevier Science, 1998

  27. Andersson J-O, Helander T, Höglund L, et al. Thermo-Calc & DICTRA, computational tools for materials science. Calphad, 2002, 26(2): 273–312

    Article  CAS  Google Scholar 

  28. Saunders N. The application of calculated phase equilibria to multi-component aluminium alloys. Journal of Japanese Institute of Light Metals, 2001, 51: 141–150

    CAS  Google Scholar 

  29. Akesson B, Karlsson L. Prevention of hot cracking of butt welds in steel panels by controlled additional heating of the panels. Welding Research International, 1976, 6(5): 35–52

    Google Scholar 

  30. Shumilin V G, Karkhin V A, Rakhman M I, et al. A technique of arc welding. USSR Patent, No. 1109280, 1980

  31. Herold H, Streitenberger M, Pchennikov A, et al. Modelling of one sided welding to describe hot cracking at the end of longer butt weld seams. Welding in the World, 1999, 43(2): 56–64

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Ploshikhin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ploshikhin, V., Prihodovsky, A. & Ilin, A. Experimental investigation of the hot cracking mechanism in welds on the microscopic scale. Front. Mater. Sci. 5, 135–145 (2011). https://doi.org/10.1007/s11706-011-0135-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11706-011-0135-3

Keywords

Navigation