Skip to main content
Log in

Optical and electrical nano eco-sensors using alternative deposition of charged layer

  • Review Article
  • Published:
Frontiers of Materials Science Aims and scope Submit manuscript

Abstract

This review focuses on layer by layer (LBL) assembly-based nano ecological sensor (hereafter, eco-sensor) for pesticide detection, which is one of the most versatile methods. The effects of pesticides on human health and on the environment (air, water, soil, plants, and animals) are of great concern due to their increasing use. We highlight two of the most popular detecting methods, i.e., fluorescence and electrochemical detection of pesticides on an LBL assembly. Fluorescence materials are of great interest among researchers for their sensitivity and reliable detection, and electrochemical processes allow us to investigate synergistic interactions among film components through charge transfer mechanisms in LBL film at the molecular level. Then, we noted some prospective directions for development of different types of sensing systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Grieshaber D, MacKenzie R, Vörös J, et al. Electrochemical biosensors — sensor principles and architectures. Sensors, 2008, 8(3): 1400–1458

    Article  CAS  Google Scholar 

  2. Obare S O, De C, Guo W, et al. Fluorescent chemosensors for toxic organophosphorus pesticides: a review. Sensors, 2010, 10(7): 7018–7043

    Article  CAS  Google Scholar 

  3. Paul P, Shim B S, Kotov N A. Polymer/clay and polymer/carbon nanotube hybrid organic-inorganic multilayered composites made by sequential layering of nanometer scale films. Coordination Chemistry Reviews, 2009, 253(23–24): 2835–2851

    Google Scholar 

  4. Wang L Z, Tang F Q, Ozawa K, et al. Layer-by-layer assembled thin films of inorganic nanomaterials: fabrication and photoelectrochemical properties. International Journal of Surface Science and Engineering, 2009, 3(1–2): 44–63

    Article  CAS  Google Scholar 

  5. del Mercato L L, Rivera-Gil P, Abbasi A Z, et al. LbL multilayer capsules: recent progress and future outlook for their use in life sciences. Nanoscale, 2010, 2(4): 458–467

    Article  Google Scholar 

  6. Ji Y L, An Q F, Qian J W, et al. Nanofiltration membranes prepared by layer-by-layer self-assembly of polyelectrolyte. Progress in Chemistry, 2010, 22(1): 119–124

    CAS  Google Scholar 

  7. Ariga K, Hill J P, Ji Q M. Layer-by-layer assembly as a versatile bottom-up nanofabrication technique for exploratory research and realistic application. Physical Chemistry Chemical Physics, 2007, 9(19): 2319–2340

    Article  CAS  Google Scholar 

  8. Johnston A P R, Cortez C, Angelatos A S, et al. Layer-by-layer engineered capsules and their applications. Current Opinion in Colloid & Interface Science, 2006, 11(4): 203–209

    Article  CAS  Google Scholar 

  9. Zhao W, Xu J J, Chen H Y. Electrochemical biosensors based on layer-by-layer assemblies. Electroanalysis, 2006, 18(18): 1737–1748

    Article  CAS  Google Scholar 

  10. Srivastava S, Kotov N A. Composite layer-by-layer (LBL) assembly with inorganic nanoparticles and nanowires. Accounts of Chemical Research, 2008, 41(12): 1831–1841

    Article  CAS  Google Scholar 

  11. Kotov N A, Dekany I, Fendler J H. Layer-by-layer self-assembly of polyelectrolyte-semiconductor nanoparticle composite films. The Journal of Physical Chemistry, 1995, 99(35): 13065–13069

    Article  CAS  Google Scholar 

  12. Mamedov A A, Kotov N A, Prato M, et al. Molecular design of strong single-wall carbon nanotube/polyelectrolyte multilayer composites. Nature Materials, 2002, 1(3): 190–194

    Article  CAS  Google Scholar 

  13. Keller S W, Kim H N, Mallouk T E. Layer-by-layer assembly of intercalation compounds and heterostructures on surfaces: toward molecular “beaker” epitaxy. Journal of the American Chemical Society, 1994, 116(19): 8817–8818

    Article  CAS  Google Scholar 

  14. He J A, Valluzzi R, Yang K, et al. Electrostatic multilayer deposition of a gold-dendrimer nanocomposite. Chemistry of Materials, 1999, 11(11): 3268–3274

    Article  CAS  Google Scholar 

  15. Araki K, Wagner M J, Wrighton M S. Layer-by-layer growth of electrostatically assembled multilayer porphyrin films. Langmuir, 1996, 12(22): 5393–5398

    Article  CAS  Google Scholar 

  16. Lvov Y, Onda M, Ariga K, et al. Ultrathin films of charged polysaccharides assembled alternately with linear polyions. Journal of Biomaterials Science, Polymer Edition, 1998, 9(4): 345–355

    CAS  Google Scholar 

  17. Richert L, Lavalle Ph, Vautier D, et al. Cell interactions with polyelectrolyte multilayer films. Biomacromolecules, 2002, 3(6): 1170–1178

    Article  CAS  Google Scholar 

  18. Boulmedais F, Ball V, Schwinte P, et al. Buildup of exponentially growing multilayer polypeptide films with internal secondary structure. Langmuir, 2003, 19(2): 440–445

    Article  CAS  Google Scholar 

  19. Lvov Yu, Decher G, Sukhorukov G. Assembly of thin films by means of successive deposition of alternate layers of DNA and poly(allylamine). Macromolecules, 1993, 26(20): 5396–5399

    Article  CAS  Google Scholar 

  20. Hong J, Lowack K, Schmitt J, et al. Layer-by-layer deposited multilayer assemblies of polyelectrolytes and proteins: from ultrathin films to protein arrays. In: Laggner P, Glatter O, editors. Trends in Colloid and Interface Science VII: Springer Berlin/Heidelberg, 1993: 98–102

  21. Lvov Y, Ariga K, Kunitake T. Layer-by-layer assembly of alternate protein polyion ultrathin films. Chemistry Letters, 1994, 23(12): 2323–2326

    Article  Google Scholar 

  22. Yoo P J, Nam K T, Qi J, et al. Spontaneous assembly of viruses on multilayered polymer surfaces. Nature Materials, 2006, 5(3): 234–240

    Article  CAS  Google Scholar 

  23. Zhai L, Cebeci F C, Cohen R E, et al. Stable superhydrophobic coatings from polyelectrolyte multilayers. Nano Letters, 2004, 4(7): 1349–1353

    Article  CAS  Google Scholar 

  24. Zhai L, Berg M C, Cebeci F C, et al. Patterned superhydrophobic surfaces: toward a synthetic mimic of the Namib Desert beetle. Nano Letters, 2006, 6(6): 1213–1217

    Article  CAS  Google Scholar 

  25. Tang Z Y, Wang Y, Podsiadlo P, et al. Biomedical applications of layer-by-layer assembly: From biomimetics to tissue engineering. Advanced Materials, 2006, 18(24): 3203–3224

    Article  CAS  Google Scholar 

  26. Wood K C, Chuang H F, Batten R D, et al. Controlling interlayer diffusion to achieve sustained, multiagent delivery from layerby-layer thin films. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103(27): 10207–10212

    Article  CAS  Google Scholar 

  27. Jewell C M, Zhang J T, Fredin N J, et al. Multilayered polyelectrolyte films promote the direct and localized delivery of DNA to cells. Journal of Controlled Release, 2005, 106(1–2): 214–223

    Article  CAS  Google Scholar 

  28. Podsiadlo P, Sui L, Elkasabi Y, et al. Layer-by-layer assembled films of cellulose nanowires with antireflective properties. Langmuir, 2007, 23(15): 7901–7906

    Article  CAS  Google Scholar 

  29. Hiller J, Mendelsohn J D, Rubner M F. Reversibly erasable nanoporous anti-reflection coatings from polyelectrolyte multilayers. Nature Materials, 2002, 1(1): 59–63

    Article  CAS  Google Scholar 

  30. DeLongchamp D M, Hammond P T. High-contrast electrochromism and controllable dissolution of assembled Prussian blue/polymer nanocomposites. Advanced Functional Materials, 2004, 14(3): 224–232

    Article  CAS  Google Scholar 

  31. Moriguchi I, Fendler J H. Characterization and electrochromic properties of ultrathin films self-assembled from poly(diallyldimethylammonium) chloride and sodium decatungstate. Chemistry of Materials, 1998, 10(8): 2205–2211

    Article  CAS  Google Scholar 

  32. Heuberger R, Sukhorukov G, Voros J, et al. Biofunctional polyelectrolyte multilayers and microcapsules: Control of nonspecific and bio-specific protein adsorption. Advanced Functional Materials, 2005, 15(3): 357–366

    Article  CAS  Google Scholar 

  33. Hodak J, Etchenique R, Calvo E J, et al. Layer-by-layer self-assembly of glucose oxidase with a poly(allylamine)ferrocene redox mediator. Langmuir, 1997, 13(10): 2708–2716

    Article  CAS  Google Scholar 

  34. He P, Bayachou M. Layer-by-layer fabrication and characterization of DNA-wrapped single-walled carbon nanotube particles. Langmuir, 2005, 21(13): 6086–6092

    Article  CAS  Google Scholar 

  35. Yang M, Yang Y, Yang H, et al. Layer-by-layer self-assembled multilayer films of carbon nanotubes and platinum nanoparticles with polyelectrolyte for the fabrication of biosensors. Biomaterials, 2006, 27(2): 246–255

    Article  CAS  Google Scholar 

  36. Zhang H, Lu H, Hu N. Fabrication of electroactive layer-by-layer films of myoglobin with gold nanoparticles of different sizes.The Journal of Physical Chemistry B, 2006, 110(5): 2171–2179

    Article  CAS  Google Scholar 

  37. Zhai L, Berg M C, Cebeci F C, et al. Patterned superhydrophobic surfaces: toward a synthetic mimic of the Namib Desert beetle. Nano Letters, 2006, 6(6): 1213–1217

    Article  CAS  Google Scholar 

  38. Zhang J, Senger B, Vautier D, et al. Natural polyelectrolyte films based on layer-by-layer deposition of collagen and hyaluronic acid. Biomaterials, 2005, 26(16): 3353–3361

    Article  CAS  Google Scholar 

  39. Mamedov A A, Belov A, Giersig M, et al. Nanorainbows: graded semiconductor films from quantum dots. Journal of the American Chemical Society, 2001, 123(31): 7738–7739

    Article  CAS  Google Scholar 

  40. Wang D, Rogach A L, Caruso F. Semiconductor quantum dotlabeled microsphere bioconjugates prepared by stepwise self-assembly. Nano Letters, 2002, 2(8): 857–861

    Article  CAS  Google Scholar 

  41. Shim B S, Podsiadlo P, Lilly D G, et al. Nanostructured thin films made by dewetting method of layer-by-layer assembly. Nano Letters, 2007, 7(11): 3266–3273

    Article  CAS  Google Scholar 

  42. Podsiadlo P, Paternel S, Rouillard J M, et al. Layer-by-layer assembly of nacre-like nanostructured composites with antimicrobial properties. Langmuir, 2005, 21(25): 11915–11921

    Article  CAS  Google Scholar 

  43. Billingsley K, Balaconis M K, Dubach J M, et al. Fluorescent nano-optodes for glucose detection. Analytical Chemistry, 2010, 82(9): 3707–3713

    Article  CAS  Google Scholar 

  44. Duong H D, Rhee J I. Use of CdSe/ZnS core-shell quantum dots as energy transfer donors in sensing glucose. Talanta, 2007, 73(5): 899–905

    Article  CAS  Google Scholar 

  45. Tang B, Cao L H, Xu K H, et al. A new nanobiosensor for glucose with high sensitivity and selectivity in serum based on fluorescence resonance energy transfer (FRET) between CdTe quantum dots and Au nanoparticles. Chemistry, 2008, 14(12): 3637–3644

    Article  CAS  Google Scholar 

  46. Gill R, Bahshi L, Freeman R, et al. Optical detection of glucose and acetylcholine esterase inhibitors by H2O2-sensitive CdSe/ZnS quantum dots. Angewandte Chemie International Edition, 2008, 47(9): 1676–1679

    Article  CAS  Google Scholar 

  47. Xiao Y, Barker P E. Semiconductor nanocrystal probes for human metaphase chromosomes. Nucleic Acids Research, 2004, 32(3): e28

    Article  Google Scholar 

  48. Zhang C Y, Yeh H C, Kuroki M T, et al. Single-quantum-dot-based DNA nanosensor. Nature Materials, 2005, 4(11): 826–831

    Article  Google Scholar 

  49. Crut A, Géron-Landre B, Bonnet I, et al. Detection of single DNA molecules by multicolor quantum-dot end-labeling. Nucleic Acids Research, 2005, 33(11): e98

    Article  Google Scholar 

  50. Niu S Y, Jiang Y, Zhang S S. Fluorescence detection for DNA using hybridization chain reaction with enzyme-amplification. Chemical Communications, 2010, 46(18): 3089–3091

    Article  CAS  Google Scholar 

  51. Qin P Z, Niu C G, Zeng G M, et al. Time-resolved fluorescence based DNA detection using novel europium ternary complex doped silica nanoparticles. Talanta, 2009, 80(2): 991–995

    Article  CAS  Google Scholar 

  52. Niu S Y, Li Q Y, Ren R, et al. Enzyme-enhanced fluorescence detection of DNA on etched optical fibers. Biosensors & Bioelectronics, 2009, 24(9): 2943–2946

    Article  CAS  Google Scholar 

  53. Berdat D, Marin A, Herrera F, et al. DNA biosensor using fluorescence microscopy and impedance spectroscopy. Sensors and Actuators B, Chemical, 2006, 118(1–2): 53–59

    Article  Google Scholar 

  54. Shaghaghia M, Manzoori J L, Jouyban A. Determination of total phenols in tea infusions, tomato and apple juice by terbium sensitized fluorescence method as an alternative approach to the Folin-Ciocalteu spectrophotometric method. Food Chemistry, 2008, 108(2): 695–701

    Article  Google Scholar 

  55. Wang X, Zeng H L, Zhao L X, et al. Selective determination of bisphenol A (BPA) in water by a reversible fluorescence sensor using pyrene/dimethyl β-cyclodextrin complex. Analytica Chimica Acta, 2006, 5556(2): 313–318

    Article  CAS  Google Scholar 

  56. Krupadam R J, Bhagat B, Wate S R, et al. Fluorescence spectrophotometer analysis of polycyclic aromatic hydrocarbons in environmental samples based on solid phase extraction using molecularly imprinted polymer. Environmental Science & Technology, 2009, 43(8): 2871–2877

    Article  CAS  Google Scholar 

  57. Silva R, Masini J, Ribeiro M, et al. Improving the fluorescence detectability of polycyclic aromatic hydrocarbons for evaluation of workplace environments of cement industries processing organic residues. Analytical Letters, 2008, 41(14): 2646–2657

    Article  CAS  Google Scholar 

  58. Goryacheva I Y, Eremin S A, Shutaleva E A, et al. Development of a fluorescence polarization immunoassay for polycyclic aromatic hydrocarbons. Analytical Letters, 2007, 40(7): 1445–1460

    Article  CAS  Google Scholar 

  59. Geme G, Brown M A, Simone P Jr, et al. Measuring the concentrations of drinking water disinfection by-products using capillary membrane sampling-flow injection analysis. Water Research, 2005, 39(16): 3827–3836

    Article  CAS  Google Scholar 

  60. Wang Z-D, Yan T, Wang B-H. Study on experiment of fluorescence spectra detection of organic pesticides in soil. Spectroscopy and Spectral Analysis, 2009, 29(2): 479–482

    CAS  Google Scholar 

  61. Qu F G, Zhou X F, Xu J, et al. Luminescence switching of CdTe quantum dots in presence of p-sulfonatocalix[4]arene to detect pesticides in aqueous solution. Talanta, 2009, 78(4–5): 1359–1363

    Article  CAS  Google Scholar 

  62. Tang J S, Zhang M, Cheng G G, et al. Development of fluorescence polarization immunoassay for the detection of organophosphorus pesticides parathion and azinphos-methyl. Journal of Immunoassay & Immunochemistry, 2008, 29(4): 356–369

    Article  CAS  Google Scholar 

  63. Sanchez-Barragan I, Karim K, Costa-Fernandez J M, et al. A molecularly imprinted polymer for carbaryl determination in water. Sensors and Actuators B, Chemical, 2007, 123(2): 798–804

    Article  Google Scholar 

  64. Huang X B, Meng J, Dong Y, et al. Polymer-based fluorescence sensor incorporating triazole moieties for Hg2+ detection via click reaction. Polymer, 2010, 51(14): 3064–3067

    Article  CAS  Google Scholar 

  65. Ma B L, Wu S Z, Zeng F, et al. Nanosized diblock copolymer micelles as a scaffold for constructing a ratiometric fluorescent sensor for metal ion detection in aqueous media. Nanotechnology, 2010, 21(19): 195501

    Article  Google Scholar 

  66. Huang X B, Meng J, Dong Y, et al. Polymer-based fluorescence sensors incorporating chiral binaphthyl and benzo[2,1,3]thiadiazole moieties for Hg2+ detection. Journal of Polymer Science, Part A, Polymer Chemistry, 2010, 48(5): 997–1006

    Article  CAS  Google Scholar 

  67. Dong Z P, Jin J, Zhao WF, et al. Quinoline group grafted carbon nanotube fluorescent sensor for detection of Cu2+ ion. Applied Surface Science, 2009, 255(23): 9526–9530

    Article  CAS  Google Scholar 

  68. Guo L Q, Hu H, Sun R Q, et al. Highly sensitive fluorescent sensor for mercury ion based on photoinduced charge transfer between fluorophore and pi-stacked T-Hg(II)-T base pairs. Talanta, 2009, 79(3): 775–779

    Article  CAS  Google Scholar 

  69. Koneswaran M, Narayanaswamy R. L-Cysteine-capped ZnS quantum dots based fluorescence sensor for Cu2+ ion. Sensors and Actuators B, Chemical, 2009, 139(1): 104–109

    Article  Google Scholar 

  70. Weng Y, Chen Z L, Wang F, et al. High sensitive determination of zinc with novel water-soluble small molecular fluorescent sensor. Analytica Chimica Acta, 2009, 647(2): 215–218

    Article  CAS  Google Scholar 

  71. Mao J, He Q, Liu W S. An “off-on” fluorescence probe for chromium(III) ion determination in aqueous solution. Analytical and Bioanalytical Chemistry, 2010, 396(3): 1197–1203

    Article  CAS  Google Scholar 

  72. Nagatoishi S, Nojima T, Galezowska E, et al. Fluorescence energy transfer probes based on the guanine quadruplex formation for the fluorometric detection of potassium ion. Analytica Chimica Acta, 2007, 581(1): 125–131

    Article  CAS  Google Scholar 

  73. Papadopoulou-Mourkidou E, Patsias J. Development of a semiautomated high-performance liquid chromatographic diode array detection system for screening pesticides at trace levels in aquatic systems of the Axios River basin. Journal of Chromatography A, 1996, 726(1–2): 99–113

    Article  CAS  Google Scholar 

  74. Patsias J, Papadopoulou-Mourkidou E. Rapid method for the analysis of a variety of chemical classes of pesticides in surface and ground waters by off-line solid-phase extraction and gas chromatography ion trap mass spectrometry. Journal of Chromatography A, 1996, 740(1): 83–98

    Article  CAS  Google Scholar 

  75. Sherma J. Review of advances in the thin layer chromatography of pesticides: 2006–2008. Journal of Environmental Science and Health Part B: Pesticides, Food Contaminants, and Agricultural Wastes, 2009, 44(3): 193–203

    CAS  Google Scholar 

  76. García-Reyes J F, Jackson A U, Molina-Díaz A, et al. Desorption electrospray ionization mass spectrometry for trace analysis of agrochemicals in food. Analytical Chemistry, 2009, 81(2): 820–829

    Article  Google Scholar 

  77. Xiong D, Li H. Colorimetric detection of pesticides based on calixarene modified silver nanoparticles in water. Nanotechnology, 2008, 19(46): 465502

    Article  Google Scholar 

  78. Henriksen T, Svensmark B, Lindhardt B, et al. Analysis of acidic pesticides using in situ derivatization with alkylchloroformate and solid-phase microextraction (SPME) for GC-MS. Chemosphere, 2001, 44(7): 1531–1539

    Article  CAS  Google Scholar 

  79. Schlücker S, Roman V, Kiefer W, et al. Detection of pesticide model compounds in ethanolic and aqueous microdroplets by nonlinear Raman spectroscopy. Analytical Chemistry, 2001, 73(13): 3146–3152

    Article  Google Scholar 

  80. Lacorte S, Quintana J, Tauler R, et al. Ultra-trace determination of Persistent Organic Pollutants in Arctic ice using stir bar sorptive extraction and gas chromatography coupled to mass spectrometry. Journal of Chromatography, A, 2009, 1216(49): 8581–8589

    Article  CAS  Google Scholar 

  81. Alvarez D A, Petty J D, Huckins J N, et al. Development of a passive, in situ, integrative sampler for hydrophilic organic contaminants in aquatic environments. Environmental Toxicology and Chemistry, 2004, 23(7): 1640–1648

    Article  CAS  Google Scholar 

  82. Janotta M, Karlowatz M, Vogt F, et al. Sol-gel based mid-infrared evanescent wave sensors for detection of organophosphate pesticides in aqueous solution. Analytica Chimica Acta, 2003, 496(1–2): 339–348

    Article  CAS  Google Scholar 

  83. Hassoon S, Schechter I. In situ fluorimetric determination of pesticides on vegetables. Analytica Chimica Acta, 2000, 405(1–2): 9–15

    Article  CAS  Google Scholar 

  84. Li H P, Li G C, Jen J F. Determination of organochlorine pesticides in water using microwave assisted headspace solidphase microextraction and gas chromatography. Journal of Chromatography, A, 2003, 1012(2): 129–137

    Article  CAS  Google Scholar 

  85. Zhang S P, Shan L G, Zheng Y, et al. Study of enzyme biosensor for monitoring carbamate pesticides in seawater. In: Peng Y, Weng X, editors. 7th Asian-Pacific Conference on Medical and Biological Engineering. Springer Berlin Heidelberg, 2008, 323–325

  86. Andersen H R, Vinggaard A M, Rasmussen T H, et al. Effects of currently used pesticides in assays for estrogenicity, androgenicity, and aromatase activity in vitro. Toxicology and Applied Pharmacology, 2002, 179(1): 1–12

    Article  CAS  Google Scholar 

  87. Mackness B, Mackness M I, Arrol S, et al. Effect of the molecular polymorphisms of human paraoxonase (PON1) on the rate of hydrolysis of paraoxon. British Journal of Pharmacology, 1997, 122(2): 265–268

    Article  CAS  Google Scholar 

  88. Constantine C A, Gattas-Asfura KM, Mello S V, et al. Layer-by-layer films of chitosan, organophosphorus hydrolase and thioglycolic acid-capped CdSe quantum dots for the detection of paraoxon. The Journal of Physical Chemistry B, 2003, 107(50): 13762–13764

    Article  CAS  Google Scholar 

  89. Isaac A, Wain A J, Compton R G, et al. A novel electroreduction strategy for the determination of sulfite. Analyst, 2005, 130(10): 1343–1344

    Article  CAS  Google Scholar 

  90. Kalimuthu P, Tkac J, Kappler U, et al. Highly sensitive and stable electrochemical sulfite biosensor incorporating a bacterial sulfite dehydrogenase. Analytical Chemistry, 2010, 82(17): 7374–7379

    Article  CAS  Google Scholar 

  91. Gamboa J C M, Peña R C, Paixão T R, et al. A renewable copper electrode as an amperometric flow detector for nitrate determination in mineral water and soft drink samples. Talanta, 2009, 80(2): 581–585

    Article  CAS  Google Scholar 

  92. Liu T Z, Wang Y, Kounaves S P, et al. Determination of organonitriles using enzyme-based selectivity mechanisms. 2. A nitrilase-modified glassy carbon microelectrode sensor for benzonitrile. Analytical Chemistry, 1995, 67(10): 1679–1683

    Article  CAS  Google Scholar 

  93. Lou B, Chen Z Q, Bian Z Q, et al. Multisignaling detection of cyanide anions based on an iridium(iii) complex: remarkable enhancement of sensitivity by coordination effect. New Journal of Chemistry, 2010, 34(1): 132–136

    Article  CAS  Google Scholar 

  94. Shimomura T, Itoh T, Sumiya T, et al. Electrochemical biosensor for the detection of formaldehyde based on enzyme immobilization in mesoporous silica materials. Sensors and Actuators B, Chemical, 2008, 135(1): 268–275

    Article  Google Scholar 

  95. Laothanachareon T, Champreda V, Sritongkham P, et al. Crosslinked enzyme crystals of organophosphate hydrolase for electrochemical detection of organophosphorus compounds. World Journal of Microbiology & Biotechnology, 2008, 24(12): 3049–3055

    Article  CAS  Google Scholar 

  96. Andreescu S, Avramescu A, Bala C, et al. Detection of organophosphorus insecticides with immobilized acetylcholinesterase — comparative study of two enzyme sensors. Analytical and Bioanalytical Chemistry, 2002, 374(1): 39–45

    Article  CAS  Google Scholar 

  97. Palchetti I, Laschi S, Mascini M. Electrochemical biosensor technology: application to pesticide detection. Biosensors and Biodetection, 2008, 115–26

  98. Cheng X, Wang Q, Zhang S, et al. Determination of four kinds of carbamate pesticides by capillary zone electrophoresis with amperometric detection at a polyamide-modified carbon paste electrode. Talanta, 2007, 71(3): 1083–1087

    Article  CAS  Google Scholar 

  99. Wang X, Liu M L, Cheng X L, et al. Flow-based luminescence-sensing methods for environmental water analysis. Trac-Trends in Analytical Chemistry, 2009, 28(1): 75–87

    Article  Google Scholar 

  100. Crespilho F N, Zucolotto V, Siqueira J R Jr, et al. Immobilization of humic acid in nanostructured layer-by-layer films for sensing applications. Environmental Science & Technology, 2005, 39(14): 5385–5389

    Article  CAS  Google Scholar 

  101. Drummond I, Van Roosmalen P B, Kornicki M. Determination of total pentachlorophenol in the urine of workers. A method incorporating hydrolysis, an internal standard and measurement by liquid chromatography. International Archives of Occupational and Environmental Health, 1982, 50(4): 321–327

    Article  CAS  Google Scholar 

  102. Pekari K, Luotamo M, Järvisalo J, et al. Urinary excretion of chlorinated phenols in saw-mill workers. International Archives of Occupational and Environmental Health, 1991, 63(1): 57–62

    Article  CAS  Google Scholar 

  103. Wang H, Wang J, Timchalk C, et al. Magnetic electrochemical immunoassays with quantum dot labels for detection of phosphorylated acetylcholinesterase in plasma. Analytical Chemistry, 2008, 80(22): 8477–8484

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jaebeom Lee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ahmed, S.R., Hong, S.C. & Lee, J. Optical and electrical nano eco-sensors using alternative deposition of charged layer. Front. Mater. Sci. 5, 40–49 (2011). https://doi.org/10.1007/s11706-011-0117-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11706-011-0117-5

Keywords

Navigation