Skip to main content
Log in

Fabrication of hydrophilic paclitaxel-loaded PLA-PEG-PLA microparticles via SEDS process

  • Research Article
  • Published:
Frontiers of Materials Science in China Aims and scope Submit manuscript

Abstract

In this work, chemically bonded poly(D, L-lactide)-polyethylene glycol-poly(D, L-lactide) (PLA-PEG-PLA) triblock copolymers with various PEG contents and PLA homopolymer were synthesized via melt polymerization, and were confirmed by FTIR and 1H-NMR results. The molecular weight and polydispersity of the synthesized PLA and PLA-PEG-PLA copolymers were investigated by gel permeation chromatography. Hydrophilicity of the copolymers was identified by contact angle measurement. PLA-PEG-PLA and PLA microparticles loaded with and without PTX were then produced via solution enhanced dispersion by supercritical CO2 (SEDS) process. The effect of the PEG content on the particle size distribution, morphology, drug load, and encapsulation efficiency of the fabricated microparticles was also studied. Results indicate that PLA and PLA-PEG-PLA microparticles all exhibit sphere-like shape with smooth surface, when PEG content is relatively low. The produced microparticles have narrow particle size distributions and small particle sizes. The drug load and encapsulation efficiency of the produced microparticles decreases with higher PEG content in the copolymer matrix. Moreover, high hydrophilicity is found when PEG is chemically attached to originally hydrophobic PLA, providing the produced drug-loaded microparticles with high hydrophilicity, biocompatibility, and prolonged circulation time, which are considered of vital importance for vessel-circulating drug delivery system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Rowinsky E K, Donehower R C. Drug therapy-paclitaxel (Taxol). The New England Journal of Medicine, 1995, 332: 1004–1014

    Article  PubMed  CAS  Google Scholar 

  2. Mu L, Feng S S. Fabrication, characterization and in vitro release of paclitaxel (Taxol®) loaded poly (lactic-co-glycolic acid) microspheres prepared by spray drying technique with lipid/cholesterol emulsifiers. Journal of Controlled Release, 2001, 76: 239–254

    Article  PubMed  CAS  Google Scholar 

  3. Singla A K, Garg A, Aggarwal D. Paclitaxel and its formulations. International Journal of Pharmaceutics, 2002, 235: 179–192

    Article  PubMed  CAS  Google Scholar 

  4. Wu J, Liu Q, Lee R J. A folate receptor-targeted liposomal formulation for paclitaxel. International Journal of Pharmaceutics, 2006, 316: 148–153

    Article  PubMed  CAS  Google Scholar 

  5. Park E K, Kim S Y, Lee S B. Folate-conjugated methoxy poly (ethylene glycol)/poly(ε-caprolactone) amphiphilic block copolymeric micelles for tumor-targeted drug delivery. Journal of Controlled Release, 2005, 109: 158–168

    Article  PubMed  CAS  Google Scholar 

  6. Bae K H, Lee Y, Park T G. Oil-encapsulating PEO-PPO-PEO/PEG shell cross-linked nanocapsules for target-specific delivery of paclitaxel. Biomacromolecules, 2007, 8: 650–656

    Article  PubMed  CAS  Google Scholar 

  7. Lee L Y, Smith K A, Wang C-H. Fabrication of micro and nanoparticles of paclitaxel-loaded poly-L-lactide for controlled release using supercritical antisolvent method: effects of thermodynamics and hydrodynamics. Molecular Engineering of Biological and Chemical Systems (MEBCS). Singapore-MIT Alliance (SMA), 2005, 17

  8. Kim S H, Jeong J H, Chun K W. Target-specific cellular uptake of PLGA nanoparticles coated with poly(L-lysine)-poly(ethylene glycol)-folate conjugate. Langmuir, 2005, 21(19): 8852–8857

    Article  PubMed  CAS  Google Scholar 

  9. Mauduit J, Bukh N, Vert M. Gentamycin/poly(lactic acid) blends aimed at sustained release local antibiotic therapy administered per-operatively. I. The case of gentamycin base and gentamycin sulfate in poly(lactic acid) oligomers. Journal of Controlled Release, 1993, 23(3): 209–220

    Article  CAS  Google Scholar 

  10. Perrin D E, English J P. Handbook of Biodegradable Polymers, Chapter 1. Amsterdam: Harwood Academic, 1997

    Google Scholar 

  11. Llovet M I, Egea M A, Valero J. Methotrexate loaded nanoparticles: analysis of drug content and study of the matrix structure. Drug Development and Industrial Pharmacy, 1995, 21(15): 1761–1771

    Article  CAS  Google Scholar 

  12. Gomez-Lopera S A, Plaza R C, Delgado A V. Synthesis and characterization of spherical magnetite/biodegradable polymer composite particles. Journal of Colloid and Interface Science, 2001, 240: 40–47

    Article  PubMed  CAS  Google Scholar 

  13. Song K H, Lee C H, Lim J S. Preparation of L-PLA particles by a continuous supercritical antisolvent precipitation process. Korean Journal of Chemistry Engineering, 2002, 19(1): 139–145

    Article  CAS  Google Scholar 

  14. Chan P, Kurisawa M, Chung J E. Synthesis and characterization of chitosan-g-poly(ethylene glycol)-folate as a non-viral carrier for tumor-targeted gene delivery. Biomaterials, 2007, 28: 540–549

    Article  PubMed  CAS  Google Scholar 

  15. Yoo H S, Park T G. Folate-receptor-targeted delivery of doxorubicin nano-aggregates stabilized by doxorubicin-PEG-folate conjugate. Journal of Controlled Release, 2004, 100: 247–256

    Article  PubMed  CAS  Google Scholar 

  16. Zhao X B, Lee R J. Tumor-selective targeted delivery of genes and antisense oligodeoxyribonucleotides via the folate receptor. Advanced Drug Delivery Reviews, 2004, 56: 1193–1204

    Article  PubMed  CAS  Google Scholar 

  17. He G, Ma L L, Pan J. ABA and BAB type triblock copolymers of PEG and PLA: A comparative study of drug release properties and “stealth” particle characteristics. International Journal of Pharmaceutics, 2007, 334: 48–55

    Article  PubMed  CAS  Google Scholar 

  18. Hiemstra C, Zhong Z Y, Jiang X. PEG-PLLA and PEG-PDLA multiblock copolymers: Synthesis and in situ hydrogel formation by stereocomplexation. Journal of Controlled Release, 2006, 116: e17–e19

    Article  PubMed  CAS  Google Scholar 

  19. Kim H D, Bae E H, Kwon I C. Effect of PEG-PLLA diblock copolymer on macroporous PLLA scaffolds by thermally induced phase separation. Biomaterials, 2004, 25: 2319–2329

    Article  PubMed  CAS  Google Scholar 

  20. Sun J, Hong Z, Yang L. Study on crystalline morphology of poly(L-lactide)-poly(ethylene glycol) diblock copolymer. Polymer, 2004, 45: 5969–5977

    Article  CAS  Google Scholar 

  21. Lai W C, Liau W B, Lin T T. The effect of end groups of PEG on the crystallization behaviors of binary crystalline polymer blends PEG/PLLA. Polymer, 2004, 45: 3073–3080

    Article  CAS  Google Scholar 

  22. Rantakyla M, Jantti M, Aaltonen O. The effect of initial drop size on particle size in the supercritical antisolvent precipitation (SAS) technique. The Journal of Supercritical Fluids, 2002, 24: 251–263

    Article  CAS  Google Scholar 

  23. Bush J R, Akgerman A, Hall K R. Synthesis of controlled release device with supercritical CO2 and co-solvent. The Journal of Supercritical Fluids, 2007, 41: 311–316

    Article  CAS  Google Scholar 

  24. Ghaderi R, Artursson P, Carlfors J. A new method for preparing biodegradable microparticles and entrapment of hydrocortisone in DL-PLG microparticles using supercritical fluids. European Journal of Pharmaceutical Sciences, 2000, 10: 1–9

    Article  PubMed  CAS  Google Scholar 

  25. Ghaderi R, Artursson P, Carlfors J. Preparation of biodegradable microparticles using solution enhanced dispersion by supercritical fluids (SEDS). Pharmaceutical Research, 1999, 16(5): 676–681

    Article  PubMed  CAS  Google Scholar 

  26. Kazarian S G. Polymer processing with supercritical fluids. Polymer Science, Series C, 2000, 42(1): 78–101

    Google Scholar 

  27. Nalawade S P, Picchioni F, Janssen L P B M. Supercritical carbon dioxide as a green solvent for processing polymer melts: Processing aspects and applications. Progress in Polymer Science, 2006, 31(1): 19–43

    Article  CAS  Google Scholar 

  28. Hyatt J A. Liquid and supercritical carbon dioxide as organic solvents. The Journal of Organic Chemistry, 1984, 49: 5097–5101

    Article  CAS  Google Scholar 

  29. DeSimone J M, Guan Z, Elsbernd C S. Synthesis of fluoropolymers in supercritical carbon dioxide. Science, 1992, 257: 945–947

    Article  PubMed  ADS  CAS  Google Scholar 

  30. Date A A, Patravale V B. Current strategies for engineering drug nanoparticles. Current Opinion in Colloid & Interface Science, 2004, 9: 222–235

    Article  CAS  Google Scholar 

  31. Reverchon E, Porta G D, Rosa I D. Supercritical antisolvent micronization of some biopolymers. The Journal of Supercritical Fluids, 2000, 18: 239–245

    Article  Google Scholar 

  32. York P. Strategies for particle design using supercritical fluid technologies. Pharmaceutical Science & Technology Today, 1999, 2(11): 430–440

    Article  CAS  Google Scholar 

  33. Jung J, Perrut M. Particle design using supercritical fluids: Literature and patent survey. The Journal of Supercritical Fluids, 2001, 20: 179–219

    Article  CAS  Google Scholar 

  34. Yeo S D, Kiran E. Formation of polymer particles with supercritical fluids: A review.The Journal of Supercritical Fluids, 2005, 34: 287–308

    Article  CAS  Google Scholar 

  35. Majerik V, Charbit G, Badens E. Bioavailability enhancement of an active substance by supercritical antisolvent precipitation. The Journal of Supercritical Fluids, 2007, 40: 101–110

    Article  CAS  Google Scholar 

  36. Chen A Z, Pu X M, Kang Y Q. Preparation of 5-fluorouracil-poly(L-lactide) microparticles using solution-enhanced dispersion by supercritical CO2. Macromolecular Rapid Communications, 2006, 27: 1254–1259

    Article  CAS  Google Scholar 

  37. Chen A Z, Pu X M, Kang Y Q. Study of poly(L-lactide) microparticles based on supercritical CO2. Journal of Material Science: Material Medicine, 2007, 18: 2339–2345

    Article  CAS  Google Scholar 

  38. Wang Y, Dave R N, Pfeffer R. Polymer coating/encapsulation of nanoparticles using a supercritical anti-solvent process. The Journal of Supercritical Fluids, 2004, 28: 85–99

    Article  CAS  Google Scholar 

  39. Wang Y, Pfeffer R, Dave R N. Polymer encapsulation of fine particles by a supercritical antisolvent process. AIChE Journal, 2005, 51(2): 440–455

    Article  Google Scholar 

  40. Loo S C J, Ooi C P, Boey Y C F. Radiation effects on poly(lactide-co-glycolide) (PLGA) and poly(l-lactide) (PLLA). Polymer Degradation and Stability, 2004, 83: 259–265

    Article  CAS  Google Scholar 

  41. Liu W, Yang A, Li Z. PEGylated PLGA nanoparticles as tumor ecrosis factor-α receptor blocking peptide carriers: preparation, characterization and release in vitro. Journal of Wuhan University of Technology-Material Science Edition, 2007, 22(1): 112–116

    Article  CAS  Google Scholar 

  42. Kubies D, Rypacek F, Kovarova J. Microdomain structure in polylactide-block-poly(ethylene oxide) copolymer films. Biomaterials, 2000, 21: 529–536

    Article  PubMed  CAS  Google Scholar 

  43. Dong Y, Feng S S. Methoxy poly(ethylene glycol)-poly(lactide) (MPEG-PLA) nanoparticles for controlled delivery of anticancer drugs. Biomaterials, 2004, 25: 2843–2849

    Article  PubMed  CAS  Google Scholar 

  44. Ren J, Hong H, Ren T. Preparation and characterization of magnetic PLA-PEG composite nanoparticles for drug targeting. Reactive & Functional Polymers, 2006, 66: 944–951

    Article  CAS  Google Scholar 

  45. Chang Y, Shih Y J, Ruaan R C. Preparation of poly(vinylidene fluoride) microfiltration membrane with uniform surface-copolymerized poly(ethylene glycol) methacrylate and improvement of blood compatibility. Journal of Membrane Science, 2008, 309: 165–174

    Article  CAS  Google Scholar 

  46. Zhang L F, Sun R, Xu L. Hydrophilic poly (ethylene glycol) coating on PDLLA/BCP bone scaffold for drug delivery and cell culture. Materials Science and Engineering: C, 2008, 28: 141–149

    Article  ADS  Google Scholar 

  47. Gopferich A. Handbook of Biodegrable Polymers, Chapter 22. Amsterdam: OPA, 1997

    Google Scholar 

  48. Li S, Garreau H, Vert M. Structure-property relationships in the case of the degradation of massive poly(α-hydroxy acids) in aqueous media. Journal of Materials Science: Materials in Medicine, 1990, 1(4): 198–206

    Article  CAS  Google Scholar 

  49. Rokkanen P, Bostman O, Hirvensalo E. Totally biodegradable implants for bone fixation and ligament repair. MRS Bulletin, 2000, 25(1): 21–24

    CAS  Google Scholar 

  50. Nakamura T, Hitomi S, Watanabe S. Bioabsorption of polylactides with different molecular properties. Journal of Biomedical Materials Research, 1989, 23(10): 1115–1130

    Article  PubMed  CAS  Google Scholar 

  51. Zhang X, Wyss U P, Pichora D, et al. A mechanistic study of antibiotic release from biodegradable poly(d,1-lactide) cylinders. Journal of Controlled Release, 1994, 31(2): 129–144

    Article  CAS  Google Scholar 

  52. US Pharmacopeia. Organic Volatile Impurities, 25th Revision, 2002, 1943–1945

  53. Elvassore N, Bertucco A, Caliceti P. Production of insulin-loaded poly(ethylene glycol)/poly(l-lactide) (PEG/PLA) nanoparticles by gas antisolvent techniques. Journal of Pharmaceutical Sciences, 2001, 90(10): 1628–1636

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guang-fu Yin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ouyang, P., Kang, Yq., Yin, Gf. et al. Fabrication of hydrophilic paclitaxel-loaded PLA-PEG-PLA microparticles via SEDS process. Front. Mater. Sci. China 3, 15–24 (2009). https://doi.org/10.1007/s11706-009-0017-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11706-009-0017-0

Keywords

Navigation