Skip to main content
Log in

Fabrication of coconut shell-derived porous carbons for CO2 adsorption application

  • Research Article
  • Published:
Frontiers of Chemical Science and Engineering Aims and scope Submit manuscript

Abstract

Biomass-derived porous carbons have been considered as the most potential candidate for effective CO2 adsorbent thanks to being widely-available precursor and having highly porous structure and stable chemical/physical features. However, the biomass-derived porous carbons still suffer from the poor optimization process in terms of the synthesis conditions. Herein, we have successfully fabricated coconut shell-derived porous carbon by a simple one-step synthesis process. The as-prepared carbon exhibits advanced textual activity together with well-designed micropore morphology and possesses oxygen-containing functional groups (reached 18.81 wt %) within the carbon matrix. Depending on the different activating temperatures (from 700 to 800 °C) and KOH/biomass mass ratios (from 0.3 to 1), the 750 °C and 0.5 mass ratio were found to be enabling the highest CO2 capture performance. The optimal adsorbent was achieved a high CO2 uptake capacity of 5.92 and 4.15 mmol·g−1 at 0 and 25 °C (1 bar), respectively. More importantly, as-prepared carbon adsorbent exhibited moderate isosteric heat of adsorption and high CO2/N2 selectivity. The results were revealed not only the textural feature but also the surface functional groups critically determine the CO2 capture performance, indicating coconut shell-derived porous carbon has a considerable potential as a solid-state adsorbent for the CO2 capture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ma C, Lu T, Shao J, Huang J, Hu X, Wang L. Biomass derived nitrogen and sulfur co-doped porous carbons for efficient CO2 adsorption. Separation and Purification Technology, 2022, 281: 119899

    Article  CAS  Google Scholar 

  2. Ratajczak P, Suss M E, Kaasik F, Beguin F. Carbon electrodes for capacitive technologies. Energy Storage Materials, 2019, 16: 126–145

    Article  Google Scholar 

  3. Wang Y F, Zou S J, Hu W P, Wu F F, Yang J X, Cen Y Y, Yang D X, Hou Z Q, Huang K J. Biomass-derived graphene-like carbon nanoflakes for advanced supercapacitor and hydrogen evolution reaction. Journal of Alloys and Compounds, 2022, 928: 167176

    Article  CAS  Google Scholar 

  4. Gao W R, Lin Z X, Chen H R, Yan S S, Huang Y, Hu X, Zhang S. A review on N-doped biochar for enhanced water treatment and emerging applications. Fuel Processing Technology, 2022, 237:107468

    Article  CAS  Google Scholar 

  5. He L, Weniger F, Neumann H, Beller M. Synthesis, characterization, and application of metal nanoparticles supported on nitrogen-doped carbon: catalysis beyond electrochemistry. Angewandte Chemie International Edition, 2016, 55(41): 12582–12594

    Article  CAS  PubMed  Google Scholar 

  6. Das O, Bhattacharyya D, Hui D, Lau K T. Mechanical and flammability characterisations of biochar/polypropylene biocomposites. Composites Part B: Engineering, 2016, 106: 120–128

    Article  CAS  Google Scholar 

  7. Idrees M, Jeelani S, Rangari V. Three-dimensional-printed sustainable biochar-recycled PET composites. ACS Sustainable Chemistry & Engineering, 2018, 6(11): 13940–13948

    Article  CAS  Google Scholar 

  8. Li S Y, Li X Y, Chen C C, Wang H Y, Deng Q Y, Gong M, Li D G. Development of electrically conductive nano bamboo charcoal/ultra-high molecular weight polyethylene composites with a segregated network. Composites Science and Technology, 2016, 132: 31–37

    Article  CAS  Google Scholar 

  9. Shi S, Liu Y. Nitrogen-doped activated carbons derived from microalgae pyrolysis byproducts by microwave/KOH activation for CO2 adsorption. Fuel, 2021, 306: 121762

    Article  CAS  Google Scholar 

  10. Shen S, Shi X, Li C, Guo H, Long Q, Wang S, Yin X. Nonaqueous (amine + glycol ether) solvents for energy-efficient CO2 capture: new insights into phase change behaviors and assessment of capture performance. Separation and Purification Technology, 2022, 300: 121908

    Article  CAS  Google Scholar 

  11. Millward A R, Yaghi O M. Metal-organic frameworks with exceptionally high capacity for storage of carbon dioxide at room temperature. Journal of the American Chemical Society, 2005, 127(51): 17998–17999

    Article  CAS  PubMed  Google Scholar 

  12. Chatterjee S, Jeevanandham S, Mukherjee M, Vo D V N, Mishra V. Significance of re-engineered zeolites in climate mitigation—a review for carbon capture and separation. Journal of Environmental Chemical Engineering, 2021, 9(5): 105957

    Article  CAS  Google Scholar 

  13. Sun L B, Kang Y H, Shi Y Q, Jiang Y, Liu X Q. Highly selective capture of the greenhouse gas CO2 in polymers. ACS Sustainable Chemistry & Engineering, 2015, 3(12): 3077–3085

    Article  CAS  Google Scholar 

  14. Sang Y, Cao Y, Wang L, Yan W, Chen T, Huang J, Liu Y N. N-rich porous organic polymers based on Schiff base reaction for CO2 capture and mercury(II) adsorption. Journal of Colloid and Interface Science, 2021, 587: 121–130

    Article  CAS  PubMed  Google Scholar 

  15. Yan H Y, Zhang G J, Xu Y, Zhang Q Q, Liu J, Li G Q, Zhao Y Q, Wang Y, Zhang Y F. High CO2 adsorption on amine-functionalized improved macro-/mesoporous multimodal pore silica. Fuel, 2022, 315: 123195

    Article  CAS  Google Scholar 

  16. Zhang G, Zhao P, Hao L, Xu Y, Cheng H. A novel amine double functionalized adsorbent for carbon dioxide capture using original mesoporous silica molecular sieves as support. Separation and Purification Technology, 2019, 209: 516–527

    Article  CAS  Google Scholar 

  17. Wang Y, Kang C, Zhang Z, Usadi A K, Calabro D C, Baugh L S, Di Yuan Y, Zhao D. Evaluation of Schif-base covalent organic frameworks for CO2 capture: structure-performance relationships, stability, and performance under wet conditions. ACS Sustainable Chemistry & Engineering, 2022, 1(10): 332–341

    Article  Google Scholar 

  18. Wang J, Zhang P, Liu L, Zhang Y, Yang J, Zeng Z, Deng S. Controllable synthesis of bifunctional porous carbon for efficient gas-mixture separation and high-performance supercapacitor. Chemical Engineering Journal, 2018, 348: 57–66

    Article  CAS  Google Scholar 

  19. Shao J, Ma C, Zhao J, Wang L, Hu X. Effective nitrogen and sulfur co-doped porous carbonaceous CO2 adsorbents derived from amino acid. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 632: 127750

    Article  CAS  Google Scholar 

  20. Huang J, Bai J, Demir M, Hu X, Jiang Z, Wang L. Efficient N-doped porous carbonaceous CO2 adsorbents derived from commercial urea-formaldehyde resin. Energy & Fuels, 2022, 36(11): 5825–5832

    Article  CAS  Google Scholar 

  21. Qie Z P, Wang L J, Sun F, Xiang H, Wang H, Gao J H, Zhao G B, Fan X L. Tuning porosity of coal-derived activated carbons for CO2 adsorption. Frontiers of Chemical Science and Engineering, 2022, 16(9): 1345–1354

    Article  CAS  Google Scholar 

  22. Wang Y X, Hu X D, Guo T, Hao J, Si C D, Guo Q J. Efficient CO2 adsorption and mechanism on nitrogen-doped porous carbons. Frontiers of Chemical Science and Engineering, 2021, 15(3): 493–504

    Article  CAS  Google Scholar 

  23. Wang H, Wang H, Liu G, Yan Q. In-situ pyrolysis of Taihu blue algae biomass as appealing porous carbon adsorbent for CO2 capture: role of the intrinsic N. Science of the Total Environment, 2021, 771: 145424

    Article  CAS  PubMed  Google Scholar 

  24. Ma C, Bai J, Demir M, Hu X, Liu S, Wang L. Water chestnut shell-derived N/S-doped porous carbons and their applications in CO2 adsorption and supercapacitor. Fuel, 2022, 326: 125119

    Article  CAS  Google Scholar 

  25. Guo L, Yang J, Hu G, Hu X, Wang L, Dong Y, DaCosta H, Fan M. Role of hydrogen peroxide preoxidizing on CO2 adsorption of nitrogen-doped carbons produced from coconut shell. ACS Sustainable Chemistry & Engineering, 2016, 4(5): 2806–2813

    Article  CAS  Google Scholar 

  26. Tsai W T, Jiang T J. Mesoporous activated carbon produced from coconut shell using a single-step physical activation process. Biomass Conversion and Biorefinery, 2018, 8(3): 711–718

    Article  CAS  Google Scholar 

  27. Mi J, Wang X R, Fan R J, Qu W H, Li W C. Coconut-shell-based porous carbons with a tunable micro/mesopore ratio for high-performance supercapacitors. Energy & Fuels, 2012, 26(8): 5321–5329

    Article  CAS  Google Scholar 

  28. Lin T, Chen W, Wang L L. Particle properties in granular activated carbon filter during drinking water treatment. Journal of Environmental Sciences (China), 2010, 22(5): 681–688

    Article  CAS  PubMed  Google Scholar 

  29. Yorgun S, Yildiz D. Preparation and characterization of activated carbons from Paulownia wood by chemical activation with H3PO4. Journal of the Taiwan Institute of Chemical Engineers, 2015, 53: 122–131

    Article  CAS  Google Scholar 

  30. Singh G, Ruban A M, Geng X, Vinu A. Recognizing the potential of K-salts, apart from KOH, for generating porous carbons using chemical activation. Chemical Engineering Journal, 2023, 451: 139045

    Article  CAS  Google Scholar 

  31. Aghel B, Behaein S, Alobiad F. CO2 capture from biogas by biomass-based adsorbents: a review. Fuel, 2022, 328: 125276

    Article  CAS  Google Scholar 

  32. Himeno S, Komatsu T, Fujita S. High-pressure adsorption equilibria of methane and carbon dioxide on several activated carbons. Journal of Chemical & Engineering Data, 2005, 50(2): 369–376

    Article  CAS  Google Scholar 

  33. Ello A S, de Souza L K C, Trokourey A, Jaroniec M. Coconut shell-based microporous carbons for CO2 capture. Microporous and Mesoporous Materials, 2013, 180: 280–283

    Article  CAS  Google Scholar 

  34. Vargas D P, Giraldo L, Silvestre-Albero J, Moreno-Pirajan J C. CO2 adsorption on binderless activated carbon monoliths. Adsorption, 2011, 17(3): 497–504

    Article  CAS  Google Scholar 

  35. Prauchner M J, Oliveira S D, Rodriguez-Reinoso F. Tailoring low-cost granular activated carbons intended for CO2 adsorption. Frontiers in Chemistry, 2020, 8: 581133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Yang J, Yue L, Hu X, Wang L, Zhao Y, Lin Y, Sun Y, DaCosta H, Guo L. Efficient CO2 capture by porous carbons derived from coconut shell. Energy & Fuels, 2017, 31(4): 4287–4293

    Article  CAS  Google Scholar 

  37. Li D W, Wang Y, Zhang X X, Zhou J J, Yang Y H, Zhang Z B, Wei L, Tian Y Y, Zhao X B. Effects of compacting activated carbons on their volumetric CO2 adsorption performance. Fuel, 2020, 262: 116540

    Article  CAS  Google Scholar 

  38. Liu Y Z, Wang H, Li C C, Wang S H, Li L, Song C W, Wang T H. Hierarchical flaky porous carbon derived from waste polyimide film for high-performance aqueous supercapacitor electrodes. International Journal of Energy Research, 2022, 46(1): 370–382

    Article  Google Scholar 

  39. Wang D B, Geng Z, Li B, Zhang C M. High performance electrode materials for electric double-layer capacitors based on biomass-derived activated carbons. Electrochimica Acta, 2015, 173: 377–384

    Article  CAS  Google Scholar 

  40. Subramanian N, Viswanathan B. Nitrogen- and oxygen-containing activated carbons from sucrose for electrochemical supercapacitor applications. RSC Advances, 2015, 5(77): 63000–63011

    Article  CAS  Google Scholar 

  41. Lu T, Ma C, Demir M, Yu Q, Aghamohammadi P, Wang L, Hu X. One-pot synthesis of potassium benzoate-derived porous carbon for CO2 capture and supercapacitor application. Separation and Purification Technology, 2022, 301: 122053

    Article  CAS  Google Scholar 

  42. Sevilla M, Fuertes A B. Sustainable porous carbons with a superior performance for CO2 capture. Energy & Environmental Science, 2011, 4(5): 1765–1771

    Article  CAS  Google Scholar 

  43. Ma X C, Yang Y H, Wu Q D, Liu B G, Li D P, Chen R F, Wang C H, Li H L, Zeng Z, Li L Q. Underlying mechanism of CO2 uptake onto biomass-based porous carbons: do adsorbents capture CO2 chiefly through narrow micropores? Fuel, 2020, 282: 282

    Article  Google Scholar 

  44. Sui Z Y, Cui Y, Zhu J H, Han B H. Preparation of three-dimensional graphene oxide-polyethylenimine porous materials as dye and gas adsorbents. ACS Applied Materials & Interfaces, 2013, 5(18): 9172–9179

    Article  CAS  Google Scholar 

  45. Furukawa H, Yaghi O M. Storage of hydrogen, methane, and carbon dioxide in highly porous covalent organic frameworks for clean energy applications. Journal of the American Chemical Society, 2009, 131(25): 8875–8883

    Article  CAS  PubMed  Google Scholar 

  46. Ben T, Li Y, Zhu L, Zhang D, Cao D, Xiang Z, Yao X, Qiu S. Selective adsorption of carbon dioxide by carbonized porous aromatic framework (PAF). Energy & Environmental Science, 2012, 5(8): 8370–8376

    Article  CAS  Google Scholar 

  47. Zhang Y, Wei Z Q, Liu X, Liu F, Yan Z H, Zhou S Y, Wang J, Deng S G. Synthesis of palm sheath derived-porous carbon for selective CO2 adsorption. RSC Advances, 2022, 12(14): 8592–8599

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Yang Z X, Guo X F, Zhang G J, Xu Y. One-pot synthesis of high N-doped porous carbons derived from a N-rich oil palm biomass residue in low temperature for CO2 capture. International Journal of Energy Research, 2020, 44(6): 4875–4887

    Article  CAS  Google Scholar 

  49. Lu T, Bai J, Demir M, Hu X, Huang J, Wang L. Synthesis of potassium Bitartrate-derived porous carbon via a facile and Self-Activating strategy for CO2 adsorption application. Separation and Purification Technology, 2022, 296: 121368

    Article  CAS  Google Scholar 

  50. Ma C, Bai J, Hu X, Jiang Z, Wang L. Nitrogen-doped porous carbons from polyacrylonitrile fiber as effective CO2 adsorbents. Journal of Environmental Sciences (China), 2023, 125: 533–543

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

Financial support was provided by Zhejiang Provincial Natural Science Foundation (Grant No. LY21B070005), National Undergraduate Training Program for Innovation and Entrepreneurship of China and Self designed scientific research project of Zhejiang Normal University (Grant No. 2021ZS06). Demir M would like to acknowledge financial support from TUBITAK 2247 with a project number of 121C217 and Gaziantep KOSGEB.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xin Hu or Linlin Wang.

Supplementary materials

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bai, J., Huang, J., Yu, Q. et al. Fabrication of coconut shell-derived porous carbons for CO2 adsorption application. Front. Chem. Sci. Eng. 17, 1122–1130 (2023). https://doi.org/10.1007/s11705-022-2292-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11705-022-2292-6

Keywords

Navigation