Skip to main content
Log in

The prior rules of designing Ti3C2Tx MXene-based gas sensors

  • Research Article
  • Published:
Frontiers of Chemical Science and Engineering Aims and scope Submit manuscript

Abstract

Working temperature, sensitivity, and selectivity are some of the characteristics of the applied gas sensors. How to design and fabricate an ideal gas sensor working at room temperature is still challenging and attracting lots of interest. Two-dimensional (2D) materials with ultra-thin structure have been demonstrated as a family of ideal candidates to achieve this goal. Among them, Ti3C2Tx MXene, a kind of layered sheet synthesized by selectively etching MAX phases materials, shows remarkable potential to be the sensitive materials solely or in a composite. However, their designing rules are still lacking critical thinking from the viewpoint of the intrinsic property of Ti3C2Tx MXene based materials. In this article, two critical features, i.e., the thickness of the sensitive materials, and the scope of the analytes, are elaborated towards Ti3C2Tx MXene based gas sensors after characterizing the performance of sensing reducing gases (NH3 and CO) and oxidizing gas (NO2). First, the thinner the Ti3C2Tx MXene sensitive layer, the better the sensitivity. Second, the Ti3C2Tx MXene based gas sensor is not suitable for strong and moderate oxidation gas due to its ease of oxidation. These two rules are demonstrated, and could be considered with priority both in the future researches and practical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Broza Y Y, Zhou X, Yuan M M, Qu D Y, Zheng Y B, Vishinkin R, Khatib M, Wu W W, Haick H. Disease detection with molecular biomarkers: from chemistry of body fluids to nature-inspired chemical sensors. Chemical Reviews, 2019, 119(22): 11761–11817

    Article  CAS  PubMed  Google Scholar 

  2. Hu W W, Wan L T, Jian Y Y, Ren C, Jin K, Su X H, Bai X X, Haick H, Yao M S, Wu W W. Electronic noses: from advanced materials to sensors aided with data processing. Advanced Materials Technologies, 2019, 4(2): 38

    Google Scholar 

  3. Zhang J, Liu X, Neri G, Pinna N. Nanostructured materials for room-temperature gas sensors. Advanced Materials, 2016, 28(5): 795–831

    Article  CAS  PubMed  Google Scholar 

  4. Li Z, Li H, Wu Z, Wang M, Luo J, Torun H, Hu P, Yang C, Grundmann M, Liu X, Fu Y. Advances in designs and mechanisms of semiconducting metal oxide nanostructures for high-precision gas sensors operated at room temperature. Materials Horizons, 2019, 6 (3): 470–506

    Article  CAS  Google Scholar 

  5. Yao M, Li Q, Hou G, Lu C, Cheng B, Wu K, Xu G, Yuan F, Ding F, Chen Y. Dopant-controlled morphology evolution of WO3 polyhedra synthesized by RF thermal plasma and their sensing properties. ACS Applied Materials & Interfaces, 2015, 7(4): 2856–2866

    Article  CAS  Google Scholar 

  6. Hwang I S, Choi J K, Woo H S, Kim S J, Jung S Y, Seong T Y, Kim I D, Lee J H. Facile control of C2H5OH sensing characteristics by decorating discrete ag nanoclusters on SnO2 nanowire networks. ACS Applied Materials & Interfaces, 2011, 3(8): 3140–3145

    Article  CAS  Google Scholar 

  7. Jang J S, Choi S J, Kim S J, Hakim M, Kim I D. Rational design of highly porous SnO2 nanotubes functionalized with biomimetic nanocatalysts for direct observation of simulated diabetes. Advanced Functional Materials, 2016, 26(26): 4740–1748

    Article  CAS  Google Scholar 

  8. Kim S J, Choi S J, Jang J S, Cho H J, Koo W T, Tuller H L, Kim I D. Exceptional high-performance of Pt-based bimetallic catalysts for exclusive detection of exhaled biomarkers. Advanced Materials, 2017, 29(36): 1700737

    Article  Google Scholar 

  9. Xiao Y, Lu L, Zhang A, Zhang Y, Sun L, Huo L, Li F. Highly enhanced acetone sensing performances of porous and single crystalline ZnO nanosheets: high percentage of exposed (100) facets working together with surface modification with Pd nanoparticles. ACS Applied Materials & Interfaces, 2012, 4(8): 3797–3804

    Article  CAS  Google Scholar 

  10. Jian Y Y, Hu W W, Zhao Z H, Cheng P F, Haick H, Yao M S, Wu W W. Gas sensors based on chemi-resistive hybrid functional nanomaterials. Nano-Micro Letters, 2020, 12(1): 1–43

    Article  Google Scholar 

  11. Wu W W, Wang B, Segev Bar M, Dou W, Niu F, Horev Y D, Deng Y F, Plotkin M, Huynh T P, Jeries R, et al. Free-standing and ecofriendly polyaniline thin films for multifunctional sensing of physical and chemical stimuli. Advanced Functional Materials, 2017, 27(40): 1703147

    Article  Google Scholar 

  12. Wang Z, Huang L, Zhu X, Zhou X, Chi L. An ultrasensitive organic semiconductor NO2 sensor based on crystalline tips-pentacene films. Advanced Materials, 2017, 29(38): 1703192

    Article  Google Scholar 

  13. Jang B, Lee K Y, Noh J S, Lee W. Nanogap-based electrical hydrogen sensors fabricated from Pd-PMMA hybrid thin films. Sensors and Actuators. B, Chemical, 2014, 193: 530–535

    Article  CAS  Google Scholar 

  14. Chunliang G, Zhidong L, Song W, Wang X, Huang Y, Wang K. Synthesis, UV response, and room-temperature ethanol sensitivity of undoped and Pd-doped coral-like SnO2. Journal of Nanoparticle Research, 2013, 15(10): 1998

    Article  Google Scholar 

  15. Fashandi H, Dahlqvist M, Lu J, Palisaitis J, Simak S I, Abrikosov I A, Rosen J, Hultman L, Andersson M, Lloyd Spetz A, et al. Synthesis of Ti3Au2C2,Ti3Au2C2 and Ti3IrC2 by noble metal substitution reaction in Ti3SiC2 for high-temperature-stable Ohmic contacts to SiC. Nature Materials, 2017, 16(8): 814–818

    Article  CAS  PubMed  Google Scholar 

  16. Chae Y, Kim S J, Cho S Y, Choi J, Maleski K, Lee B J, Jung H T, Gogotsi Y, Lee Y, Ahn C W. An investigation into the factors governing the oxidation of two-dimensional Ti3C2 MXene. Nanoscale, 2019, 11(17): 8387–8393

    Article  CAS  PubMed  Google Scholar 

  17. Pazniak H, Plugin I A, Loes M J, Inerbaev T M, Burmistrov I N, Gorshenkov M, Polcak J, Varezhnikov A S, Sommer M, Kuznetsov D V, et al. Partially oxidized Ti3C2Tx Mxenes for fast and selective detection of organic vapors at part-per-million concentrations. ACS Applied Nano Materials, 2020, 3(4): 3195–3204

    Article  CAS  Google Scholar 

  18. Yao Q, Ren G, Xu K, Zhu L, Khan H, Mohiuddin M, Khan M W, Zhang B Y, Jannat A, Haque F, et al. 2D plasmonic tungsten oxide enabled ultrasensitive fiber optics gas sensor. Advanced Optical Materials, 2019, 7(24): 1901383

    Article  CAS  Google Scholar 

  19. Jannat A, Haque F, Xu K, Zhou C, Zhang B Y, Syed N, Mohiuddin M, Messalea K A, Li X, Gras S L, et al. Exciton-driven chemical sensors based on excitation-dependent photoluminescent two-dimensional SnS. ACS Applied Materials & Interfaces, 2019, 11 (45): 42462–42468

    Article  CAS  Google Scholar 

  20. Yao M S, Lv X J, Fu Z H, Li W H, Deng W H, Wu G D, Xu G. Layer-by-layer assembled conductive metal-organic framework nanofilms for room-temperature chemiresistive sensing. Angewandte Chemie International Edition, 2017, 56: 16510–16514

    Article  CAS  PubMed  Google Scholar 

  21. Meng Z, Stolz R M, Mendecki L, Mirica K A. Electrically-transduced chemical sensors based on two-dimensional nanomaterials. Chemical Reviews, 2019, 119: 478–598

    Article  CAS  PubMed  Google Scholar 

  22. Yao M S, Xiu J W, Huang Q Q, Li W H, Wu W W, Wu A Q, Cao L A, Deng W H, Wang G E, Xu G. Van der waals heterostructured MOF-on-MOF thin films: cascading functionality to realize advanced chemiresistive sensing. Angewandte Chemie International Edition, 2019, 58: 14915–14919

    Article  CAS  PubMed  Google Scholar 

  23. Xie L S, Skorupskii G, Dincă M. Electrically conductive metal-organic frameworks. Chemical Reviews, 2020, 120(16): 8536–8580

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Dong R, Zhang T, Feng X. Interface-assisted synthesis of 2D materials: trend and challenges. Chemical Reviews, 2018, 118: 6189–6235

    Article  CAS  PubMed  Google Scholar 

  25. Yao M S, Zheng J J, Wu A Q, Xu G, Nagarkar S S, Zhang G, Tsujimoto M, Sakaki S, Horike S, Otake K. A dual-ligand porous coordination polymer chemiresistor with modulated conductivity and porosity. Angewandte Chemie International Edition, 2020, 59: 172–176

    Article  CAS  PubMed  Google Scholar 

  26. Zhang Y, Wang L, Zhang N, Zhou Z. Adsorptive environmental applications of MXene nanomaterials: a review. RSC Advances, 2018, 8(36): 19895–19905

    Article  CAS  Google Scholar 

  27. Chen W Y, Jiang X, Lai S N, Peroulis D, Stanciu L. Nanohybrids of a MXene and transition metal dichalcogenide for selective detection of volatile organic compounds. Nature Communications, 2020, 11 (1): 1302

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Zhou S, Gu C, Li Z, Yang L, He L, Wang M, Huang X, Zhou N, Zhang Z. Ti3C2Tx MXene and polyoxometalate nanohybrid embedded with polypyrrole: ultra-sensitive platform for the detection of osteopontin. Applied Surface Science, 2019, 498: 143889

    Article  CAS  Google Scholar 

  29. Zavabeti A, Jannat A, Zhong L, Haidry A A, Yao Z, Ou J Z. Two-dimensional materials in large-areas: synthesis, properties and applications. Nano-Micro Letters, 2020, 12(1): 66

    Article  CAS  Google Scholar 

  30. Mohiuddin M, Zavabeti A, Haque F, Mahmood A, Datta R S, Syed N, Khan M W, Jannat A, Messalea K, Zhang B Y, et al. Synthesis of two-dimensional hematite and iron phosphide for hydrogen evolution. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2020, 8(5): 2789–2797

    Article  CAS  Google Scholar 

  31. Kim S J, Choi J, Maleski K, Hantanasirisakul K, Jung H T, Gogotsi Y, Ahn C W. Interfacial assembly of ultrathin, functional Mxene films. ACS Applied Materials & Interfaces, 2019, 11(35): 32320–32327

    Article  CAS  Google Scholar 

  32. Zhao W N, Yun N, Dai Z H, Li Y F. A high-performance trace level acetone sensor using an indispensable V4C3Tx Mxene. RSC Advances, 2020, 10(3): 1261–1270

    Article  CAS  Google Scholar 

  33. Kim S J, Koh H J, Ren C E, Kwon O, Maleski K, Cho S Y, Anasori B, Kim C K, Choi Y K, Kim J, et al. Metallic Ti3C2Tx MXene gas sensors with ultrahigh signal-to-noise ratio. ACS Nano, 2018, 12(2): 986–993

    Article  CAS  PubMed  Google Scholar 

  34. Yang Z, Liu A, Wang C, Liu F, He J, Li S, Wang J, You R, Yan X, Sun P, Duan Y, Lu G. Improvement of gas and humidity sensing properties of organ-like MXene by alkaline treatment. ACS Sensors, 2019, 4(5): 1261–1269

    Article  CAS  PubMed  Google Scholar 

  35. Yuan W, Yang K, Peng H, Li F, Yin F. A flexible vocs sensor based on a 3D MXene framework with a high sensing performance. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2018, 6(37): 18116–18124

    Article  CAS  Google Scholar 

  36. Alhabeb M, Maleski K, Anasori B, Lelyukh P, Clark L, Sin S, Gogotsi Y. Guidelines for synthesis and processing of two-dimensional titanium carbide (Ti3C2Tx MXene). Chemistry of Materials, 2017, 29(18): 7633–7644

    Article  CAS  Google Scholar 

  37. Naguib M, Kurtoglu M, Presser V, Lu J, Niu J, Heon M, Hultman L, Gogotsi Y, Barsoum M W. Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2. Advanced Materials, 2011, 23(37): 4248–4253

    Article  CAS  PubMed  Google Scholar 

  38. Naguib M, Mashtalir O, Carle J, Presser V, Lu J, Hultman L, Gogotsi Y, Barsoum M W. Two-dimensional transition metal carbides. ACS Nano, 2012, 6(2): 1322–1331

    Article  CAS  PubMed  Google Scholar 

  39. Zuo G, Wang Y, Teo W L, Xie A, Guo Y, Dai Y, Zhou W, Jana D, Xian Q, Dong W, Zhao Y. Ultrathin ZnIn2S4 nanosheets anchored on Ti3C2Tx MXene for photocatalytic H2 evolution. Angewandte Chemie International Edition, 2020, 59(28): 11287–11292

    Article  CAS  PubMed  Google Scholar 

  40. Sarycheva A, Makaryan T, Maleski K, Satheeshkumar E, Melikyan A, Minassian H, Yoshimura M, Gogotsi Y. Two-dimensional titanium carbide (MXene) as surface-enhanced raman scattering substrate. Journal of Physical Chemistry C, 2017, 121(36): 19983–19988

    Article  CAS  Google Scholar 

  41. Habib T, Zhao X, Shah S A, Chen Y, Sun W, An H, Lutkenhaus J L, Radovic M, Green M J. Oxidation stability of Ti3C2Tx MXene nanosheets in solvents and composite films. NPJ 2D Materials and Applications, 2019, 3(1): 8

    Article  Google Scholar 

  42. Zhao X, Vashisth A, Prehn E, Sun W, Shah S A, Habib T, Chen Y, Tan Z, Lutkenhaus J L, Radovic M, et al. Antioxidants unlock shelf-stable Ti3C2Tx (MXene) nanosheet dispersions. Matter, 2019, 1(2): 513–526

    Article  Google Scholar 

  43. Cheng Y, Ma Y, Li L, Zhu M, Yue Y, Liu W, Wang L, Jia S, Li C, Qi T, et al. Bioinspired microspines for a high-performance spray Ti3C2Tx MXene-based piezoresistive sensor. ACS Nano, 2020, 14 (2): 2145–2155

    Article  CAS  PubMed  Google Scholar 

  44. Tang J, Mathis T S, Kurra N, Sarycheva A, Xiao X, Hedhili M N, Jiang Q, Alshareef H N, Xu B, Pan F, et al. Tuning the electrochemical performance of titanium carbide MXene by controllable in situ anodic oxidation. Angewandte Chemie International Edition, 2019, 58(49): 17849–17855

    Article  CAS  PubMed  Google Scholar 

  45. Sambyal P, Iqbal A, Hong J, Kim H, Kim M K, Hong S M, Han M, Gogotsi Y, Koo C M. Ultralight and mechanically robust Ti3C2Tx hybrid aerogel reinforced by carbon nanotubes for electromagnetic interference shielding. ACS Applied Materials & Interfaces, 2019, 11(41): 38046–38054

    Article  CAS  Google Scholar 

  46. Zhang C J, Pinilla S, McEvoy N, Cullen C P, Anasori B, Long E, Park S H, Seral-Ascaso A, Shmeliov A, Krishnan D, et al. Oxidation stability of colloidal two-dimensional titanium carbides (MXenes). Chemistry of Materials, 2017, 29(11): 4848–4856

    Article  CAS  Google Scholar 

  47. Lee Y, Kim S J, Kim Y J, Lim Y, Chae Y, Lee B J, Kim Y T, Han H, Gogotsi Y, Ahn C W. Oxidation-resistant titanium carbide MXene films. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2020, 8(2): 573–581

    Article  CAS  Google Scholar 

  48. Zhang J, Kong N, Uzun S, Levitt A, Seyedin S, Lynch P A, Qin S, Han M, Yang W, Liu J, et al. Scalable manufacturing of freestanding, strong Ti3C2Tx MXene films with outstanding conductivity. Advanced Materials, 2020, 32(23): 2001093

    Article  CAS  Google Scholar 

  49. Bao W, Tang X, Guo X, Choi S, Wang C, Gogotsi Y, Wang G. Porous cryo-dried MXene for efficient capacitive deionization. Joule, 2018, 2(4): 778–787

    Article  CAS  Google Scholar 

  50. Wu M, He M, Hu Q, Wu Q, Sun G, Xie L, Zhang Z, Zhu Z, Zhou A. Ti3C2 MXene-based sensors with high selectivity for NH3 detection at room temperature. ACS Sensors, 2019, 4(10): 2763–2770

    Article  CAS  PubMed  Google Scholar 

  51. Koh H J, Kim S J, Maleski K, Cho S Y, Kim Y J, Ahn C W, Gogotsi Y, Jung H T. Enhanced selectivity of MXene gas sensors through metal ion intercalation: in situ x-ray diffraction study. ACS Sensors, 2019, 4(5): 1365–1372

    Article  CAS  PubMed  Google Scholar 

  52. Yu X F, Li Y C, Cheng J B, Liu Z B, Li Q Z, Li W Z, Yang X, Xiao B. Monolayer Ti2Co2: a promising candidate for NH3 sensor or capturer with high sensitivity and selectivity. ACS Applied Materials & Interfaces, 2015, 7(24): 13707–13713

    Article  CAS  Google Scholar 

  53. Lu G, Ocola L E, Chen J. Reduced graphene oxide for room-temperature gas sensors. Nanotechnology, 2009, 20(44): 445502

    Article  PubMed  Google Scholar 

  54. Lee E, VahidMohammadi A, Prorok B C, Yoon Y S, Beidaghi M, Kim D J. Room temperature gas sensing of two-dimensional titanium carbide (MXene). ACS Applied Materials & Interfaces, 2017, 9(42): 37184–37190

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was funded by the National Natural Science Foundation of China (Grant No. 21801243), the Fundamental Research Funds the Central Universities of China (Grant No. JC2002), and the International Research Fellow of the Japan Society of the Promotion of Science (JSPS, Postdoctoral Fellowships for Research in Japan (Standard), P18334).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Weiwei Wu or Ming-Shui Yao.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jian, Y., Qu, D., Guo, L. et al. The prior rules of designing Ti3C2Tx MXene-based gas sensors. Front. Chem. Sci. Eng. 15, 505–517 (2021). https://doi.org/10.1007/s11705-020-2013-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11705-020-2013-y

Keywords

Navigation