Skip to main content
Log in

Dielectric barrier micro-plasma reactor with segmented outer electrode for decomposition of pure CO2

  • Research Article
  • Published:
Frontiers of Chemical Science and Engineering Aims and scope Submit manuscript

Abstract

Four coaxial cylinder dielectric barrier discharge micro-plasma reactors were designed for the non-catalytic decomposition of pure CO2 into CO and O2 at low temperature and ambient pressure. The influence of segmented outer electrodes on the electrical characteristics and the reaction performance was investigated. Experimental results indicated that the introduction of segmented outer electrodes can significantly promote the decomposition of CO2. Encouragingly, the highest conversion of 13.1% was obtained at an applied voltage of 18 kV, which was a substantial increase of 39.4% compared to the traditional device. Compared with other types of dielectric barrier discharge plasma reactors, the proposed segmented outer electrode micro-plasma reactor can give a higher CO2 conversion and acceptable energy efficiency. The increase in conversion can be attributed mainly to the enhanced corona discharge caused by the fringe effect at electrode edges, the increase in energy density and the increase in the number of micro-discharges. In addition, detailed electrical characterization was performed to reveal some trends in the electrical behavior of proposed reactors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zhou A, Chen D, Ma C, Yu F, Dai B. DBD plasma-ZrO2 catalytic decomposition of CO2 at low temperatures. Catalysts, 2018, 8(7): 2073–4344

    Google Scholar 

  2. Jiang Z, Xiao T, Kuznetsov V L, Edwards P P. Turning carbon dioxide into fuel. Philosophical Transactions, 1923, 2010(368): 3343–3364

    Google Scholar 

  3. Snoeckx R, Bogaerts A. Plasma technology—a novel solution for CO2 conversion? Chemical Society Reviews, 2017, 46(19): 5805–5863

    CAS  PubMed  Google Scholar 

  4. Gao J, Wang Y, Ping Y, Hu D, Xu G, Gu F, Su F. A thermodynamic analysis of methanation reactions of carbon oxides for the production of synthetic natural gas. RSC Advances, 2012, 2(6): 2358–2368

    CAS  Google Scholar 

  5. Wang B, Chi C, Xu M, Wang C, Meng D. Plasma-catalytic removal of toluene over CeO2-MnOx catalysts in an atmosphere dielectric barrier discharge. Chemical Engineering Journal, 2017, 322: 679–692

    CAS  Google Scholar 

  6. Saleem F, Zhang K, Harvey A P. Decomposition of benzene as a tar analogue in CO2 and H2 carrier gases, using a non-thermal plasma. Chemical Engineering Journal, 2019, 360: 714–720

    CAS  Google Scholar 

  7. Ge W J, Duan X F, Li Y P, Wang B W. Plasma-catalyst synergy during methanol steam reforming in dielectric barrier discharge micro-plasma reactors for hydrogen production. Plasma Chemistry and Plasma Processing, 2015, 35(1): 187–199

    CAS  Google Scholar 

  8. Michielsen I, Uytdenhouwen Y, Pype J, Michielsen B, Mertens J, Reniers F, Meynen V, Bogaerts A. CO2 dissociation in a packed bed DBD reactor: first steps towards a better understanding of plasma catalysis. Chemical Engineering Journal, 2017, 326: 477–488

    CAS  Google Scholar 

  9. Zhu B, Zhang L Y, Li M, Yan Y, Zhang X M, Zhu Y M. High-performance of plasma-catalysis hybrid system for toluene removal in air using supported Au nanocatalysts. Chemical Engineering Journal, 2020, 381: 122599

    CAS  Google Scholar 

  10. Duan X F, Hu Z Y, Li Y P, Wang B W. Effect ofdielectric packing materials on the decomposition of carbon dioxide using DBD microplasma reactor. AIChE Journal, 2015, 61(3): 898–903

    CAS  Google Scholar 

  11. Duan X F, Li Y P, Ge W J, Wang B W. Degradation of CO2 through dielectric barrier discharge microplasma. Greenhouse Gases Science and Technology, 2015, 5(2): 131–140

    CAS  Google Scholar 

  12. Trenchev G, Bogaerts A. Dual-vortex plasmatron: a novel plasma source for CO2 conversion. Journal of CO2 Utilization, 2020, 39: 101152

    CAS  Google Scholar 

  13. Bogaerts A, Neyts E C. Plasma technology: an emerging technology for energy storage. ACS Energy Letters, 2018, 3(4): 1013–1027

    CAS  Google Scholar 

  14. Zhu S, Zhou A, Feng Y U, Dai B, Ma C. Enhanced CO2 decomposition via metallic foamed electrode packed in self-cooling DBD plasma device. Plasma Science & Technology, 2019, 21(8): 085504

    CAS  Google Scholar 

  15. Niu G, Qin Y, Li W, Duan Y. Investigation of CO2 splitting process under atmospheric pressure using multi-electrode cylindrical DBD plasma reactor. Plasma Chemistry and Plasma Processing, 2019, 39(4): 809–824

    CAS  Google Scholar 

  16. Li L, Zhang H F, Li X, Kong X, Xu R, Tay K, Tu X. Plasma-assisted CO2 conversion in a gliding arc discharge: improving performance by optimizing the reactor design. Journal of CO2 Utilization, 2019, 29: 296–303

    Google Scholar 

  17. Li A, Pei Y, Tao X, Wang Z. Effects of discharge parameters on carbon dioxide conversion in TiO2 packed dielectric barrier discharge at atmospheric pressure. SN Applied Sciences, 2019, 1(8): 816

    CAS  Google Scholar 

  18. Kogelschatz U. Dielectric-barrier discharges: their history, discharge physics, and industrial applications. Plasma Chemistry and Plasma Processing, 2003, 23(1): 1–46

    CAS  Google Scholar 

  19. Mohsenian S, Nagassou D, Bhatta S, Elahi R, Trelles J P. Design and characterization of a solar-enhanced microwave plasma reactor for atmospheric pressure carbon dioxide decomposition. Plasma Sources Science & Technology, 2019, 28(6): 065001

    CAS  Google Scholar 

  20. van den Bekerom D C M, Linares J M P, Verreycken T, van Veldhuizen E M, Nijdam S, Berden G, Bongers W A, van de Sanden M C M, van Rooij G J. The importance of thermal dissociation in CO2 microwave discharges investigated by power pulsing and rotational Raman scattering. Plasma Sources Science & Technology, 2019, 28(5): 055015

    CAS  Google Scholar 

  21. Moreno S H, Stankiewicz A, Stefanidis G. A two-step modelling approach for plasma reactors—experimental validation for CO2 dissociation in surface wave microwave plasma. Reaction Chemistry & Engineering, 2019, 4(7): 1253–1269

    CAS  Google Scholar 

  22. Liu J L, Park H W, Chung W J, Park D W. High-efficient conversion of CO2 in AC-pulsed tornado gliding arc plasma. Plasma Chemistry and Plasma Processing, 2015, 36(2): 1–13

    Google Scholar 

  23. Kolev S, Bogaerts A. Similarities and differences between gliding glow and gliding arc discharges. Plasma Sources Science & Technology, 2015, 24(6): 065023

    Google Scholar 

  24. Lin L, Wu B, Yang C, Wu C K. Characteristics of gliding arc discharge plasma. Plasma Science & Technology, 2006, 8(6): 653–655

    Google Scholar 

  25. Li L, Zhang H, Li X, Huang J, Kong X, Xu R, Tu X. Magnetically enhanced gliding arc discharge for CO2 activation. Journal of CO2 Utilization, 2020, 35: 28–37

    CAS  Google Scholar 

  26. Wang B W, Yan W J, Ge W J, Duan X F. Kinetic model of the methane conversion into higher hydrocarbons with a dielectric barrier discharge microplasma reactor. Chemical Engineering Journal, 2013, 234(12): 354–360

    CAS  Google Scholar 

  27. Damideh V, Chin O H, Gabbar H A, Ch’ng S J, Tan C Y. Study of ozone concentration from CO2 decomposition in a water cooled coaxial dielectric barrier discharge. Vacuum, 2020, 177: 109370

    CAS  Google Scholar 

  28. Lee B, Kim D W, Park D. Dielectric barrier discharge reactor with the segmented electrodes for decomposition of toluene adsorbed on bare-zeolite. Chemical Engineering Journal, 2019, 357: 188–197

    CAS  Google Scholar 

  29. Niu G, Li Y, Tang J, Wang X, Duan Y. Optical and electrical analysis of multi-electrode cylindrical dielectric barrier discharge (DBD) plasma reactor. Vacuum, 2018, 157: 465–474

    CAS  Google Scholar 

  30. Banerjee A M, Billinger J, Nordheden K J, Peeters F J J. Conversion of CO2 in a packed-bed dielectric barrier discharge reactor. Journal of Vacuum Science and Technology, 2018, 36(4): 04F403

    Google Scholar 

  31. Uytdenhouwen Y, Van Alphen S, Michielsen I, Meynen V, Cool P, Bogaerts A. A packed-bed DBD micro plasma reactor for CO2 dissociation: does size matter? Chemical Engineering Journal, 2018, 348: 557–568

    CAS  Google Scholar 

  32. Ramakers M, Michielsen I, Aerts R, Meynen V, Bogaerts A. Effect of argon or helium on the CO2 conversion in a dielectric barrier discharge. Plasma Processes and Polymers, 2015, 12(8): 755–763

    CAS  Google Scholar 

  33. Lee B, Kim D W, Park D W. Dielectric barrier discharge reactor with the segmented electrodes for decomposition of toluene adsorbed on bare-zeolite. Chemical Engineering Journal, 2019, 357: 188–197

    CAS  Google Scholar 

  34. Lu N, Sun D, Zhang C, Jiang N, Shang K, Bao X, Li J, Wu Y. CO2 conversion in non-thermal plasma and plasma/g-C3N4 catalyst hybrid processes. Journal of Physics D: Applied Physics, 2018, 51(9): 094001

    Google Scholar 

  35. Gao G, Dong L, Peng K, Wei W, Li C, Wu G. Comparison of the surface dielectric barrier discharge characteristics under different electrode gaps. Physics of Plasmas, 2017, 24(1): 013510

    Google Scholar 

  36. Pipa A V, Hoder T, Koskulics J, Schmidt M, Brandenburg R. Experimental determination of dielectric barrier discharge capacitance. Review of Scientific Instruments, 2012, 83(7): 075111

    CAS  Google Scholar 

  37. Manley T C. The electric characteristics of the ozonator discharge. Transactions of the Electrochemical Society, 1943, 84(1): 83–96

    Google Scholar 

  38. Kasper C. The Theory of the potential and the technical practice of electrodeposition. Journal of the Franklin Institute, 1943, 236(3): 304–305

    Google Scholar 

  39. Reichen P, Sonnenfeld A, Von Rohr P R. Discharge expansion in barrier discharge arrangements at low applied voltages. Plasma Sources Science & Technology, 2011, 20(5): 055015

    Google Scholar 

  40. Liu S, Neiger M. Electrical modelling of homogeneous dielectric barrier discharges under an arbitrary excitation voltage. Journal of Physics D: Applied Physics, 2003, 36(24): 3144–3150

    CAS  Google Scholar 

  41. Belov I, Paulussen S, Bogaerts A. Appearance of a conductive carbonaceous coating in a CO2 dielectric barrier discharge and its influence on the electrical properties and the conversion efficiency. Plasma Sources Science & Technology, 2016, 25(1): 015023

    Google Scholar 

  42. Van Durme J, Dewulf J, Leys C, Van Langenhove H. Combining non-thermal plasma with heterogeneous catalysis in waste gas treatment: a review. Applied Catalysis B: Environmental, 2008, 78(3): 324–333

    CAS  Google Scholar 

  43. Bruggeman P J P, Brandenburg R. Atmospheric pressure discharge filaments and microplasmas: physics, chemistry and diagnostics. Journal of Physics D: Applied Physics, 2013, 46(46): 464001

    Google Scholar 

  44. Eliasson B, Hirth M, Kogelschatz U. Ozone synthesis from oxygen in dielectric barrier discharges. Journal of Physics D: Applied Physics, 1987, 20(11): 1421–1437

    CAS  Google Scholar 

  45. Tao S, Kaihua L, Cheng Z, Ping Y, Shichang Z, Ruzheng P. Experimental study on repetitive unipolar nanosecond-pulse dielectric barrier discharge in air at atmospheric pressure. Journal of Physics D: Applied Physics, 2008, 41(21): 215203

    Google Scholar 

  46. Sreethawong T, Permsin N, Suttikul T, Chavadej S. Ethylene epoxidation in low-temperature AC dielectric barrier discharge: effect of electrode geometry. Plasma Chemistry and Plasma Processing, 2010, 30(4): 503–524

    CAS  Google Scholar 

  47. Gadkari S, Gu S. Numerical investigation of coaxial DBD: influence of relative permittivity of the dielectric barrier, applied voltage amplitude, and frequency. Physics of Plasmas, 2017, 24(5): 053517

    Google Scholar 

  48. Wu A J, Zhang H, Li X D, Lu S Y, Du C M, Yan J H. Determination of spectroscopic temperatures and electron density in rotating gliding arc discharge. IEEE Transactions on Plasma Science, 2015, 43(3): 836–845

    Google Scholar 

  49. Tyata R B, Subedi D P, Shrestha R, Wong C S. Generation of uniform atmospheric pressure argon glow plasma by dielectric barrier discharge. Pramana-Journal of Physics, 2013, 80(3): 507–517

    CAS  Google Scholar 

  50. Snoeckx R, Heijkers S, Van Wesenbeeck K, Lenaerts S, Bogaerts A. CO2 conversion in a dielectric barrier discharge plasma: N2 in the mix as a helping hand or problematic impurity? Energy & Environmental Science, 2016, 9(3): 999–1011

    CAS  Google Scholar 

  51. Chen P, Shen J, Ran T, Yang T, Yin Y. Investigation of operating parameters on CO2 splitting by dielectric barrier discharge plasma. Plasma Science & Technology, 2017, 19(12): 125505

    Google Scholar 

  52. Lu N, Zhang C K, Shang K F, Jiang N, Li J, Wu Y. Dielectric barrier discharge plasma assisted CO2 conversion: understanding the effects of reactor design and operating parameters. Journal of Physics D: Applied Physics, 2019, 52(22): 224003

    CAS  Google Scholar 

  53. Niu G, Li Y, Tang J, Wang X, Duan Y. Optical and electrical analysis of multi-electrode cylindrical dielectric barrier discharge (DBD) plasma reactor. Vacuum, 2018, 157: 465–474

    CAS  Google Scholar 

Download references

Acknowledgements

This work is financially supported by the National Key Research and Development Program of China (Grant No. 2016YFB0600701).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Baowei Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, B., Wang, X. & Zhang, B. Dielectric barrier micro-plasma reactor with segmented outer electrode for decomposition of pure CO2. Front. Chem. Sci. Eng. 15, 687–697 (2021). https://doi.org/10.1007/s11705-020-1974-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11705-020-1974-1

Keywords

Navigation