Skip to main content
Log in

Diporphyrin tweezer for multichannel spectroscopic analysis of enantiomeric excess

  • Research Article
  • Published:
Frontiers of Chemical Science and Engineering Aims and scope Submit manuscript

Abstract

Chiral 1,1’-binaphthyl-linked diporphyrin ‘tweezers’ (R)-1/(S)-1 and the corresponding zinc(II) complexes (R)-2/(S)-2 were prepared as chiral host molecules, and their utility for chiral analyses (especially enantiomeric excess (ee) determinations) were evaluated. Tris(1-n-dodecyl)porphyrins were used for the first time as the interacting units. Host capabilities of the diporphyrin tweezers were investigated by titrations with (R,R)- and (S,S)-cyclohexane-1,2-diamine (CHDA). The host molecules could be used as multichannel probes of ee by using UV-vis, circular dichroism (CD), fluorescence emission and 1H nuclear magnetic resonance (1H-NMR) methods. Chiral configurations could also be differentiated using CD or 1H-NMR spectroscopy. All three optical techniques give good resolution of ee with reasonable sensitivity considering the low concentrations used (ca. 10−6 mol·L−1). The ee determination of CHDA enantiomers using NMR spectroscopy is also possible because of the reasonably well separated resonances in the case of (R,R)- and (S,S)-CHDA. Non-metallated (R)-1/(S)-1 hosts could not be used to detect chiral information in a strongly acidic chiral guest. This work demonstrates the utility of 1,1’-binapthyl-linked chiral hosts for chiral analysis of ditopically interacting enantiomers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Nunez M D C, Gallo M A, Espinosa A, Campos J M. Rapid development of chiral drugs in the pharmaceutical industry. In: New Developments in Medicinal Chemistry. United Arab Emirates: Bentham Science Publishers, 2010, 95–113

    Google Scholar 

  2. Lehn J M. Supramolecular Chemistry: Concepts and Perspectives. Weinheim, Germany: Wiley-VCH Verlagsgesellschaft, 1995, 1–271

    Google Scholar 

  3. Halpern J, Trost B. Asymmetric catalysis. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101(15): 5347

    PubMed  PubMed Central  CAS  Google Scholar 

  4. Okamoto Y, Ikai T. Chiral HPLC for efficient resolution of enantiomers. Chemical Society Reviews, 2008, 37(12): 2593–2608

    PubMed  CAS  Google Scholar 

  5. Parker D. NMR determination of enantiomeric purity. Chemical Reviews, 1991, 91(7): 1441–1457

    CAS  Google Scholar 

  6. Shcherbakova E G, Brega V, Lynch V M, James T D, Anzenbacher P Jr. High-throughput assay for enantiomeric excess determination in 1,2- and 1,3-diols and direct asymmetric reaction screening. Chemistry (Weinheim an der Bergstrasse, Germany), 2017, 23(42): 10222–10229

    CAS  Google Scholar 

  7. Jo H H, Lin C Y, Anslyn E V. Rapid optical methods for enantiomeric excess analysis: From enantioselective indicator displacement assays to exciton-coupled circular dichroism. Accounts of Chemical Research, 2014, 47(7): 2212–2221

    PubMed  CAS  Google Scholar 

  8. Yang L, Wenzel T, Williamson R T, Christensen M, Schafer W, Welch C J. Expedited selection of NMR chiral solvating agents for determination of enantiopurity. ACS Central Science, 2016, 2(5): 332–340

    PubMed  PubMed Central  CAS  Google Scholar 

  9. Pirkle W H, Sikkenka D L. The use of chiral solvating agent for nuclear magnetic resonance determination of enantiomeric purity and absolute configuration of lactones: Consequences of three-point interactions. Journal of Organic Chemistry, 1977, 42(8): 1370–1374

    CAS  Google Scholar 

  10. Labuta J, Ishihara S, Šikorský T, Futera Z, Shundo A, Hanyková L, Burda J V, Ariga K, Hill J P. NMR spectroscopic detection of chirality and enantiopurity in referenced systems without formation of diastereomers. Nature Communications, 2013, 4(1): 2188

    PubMed  PubMed Central  Google Scholar 

  11. Labuta J, Hill J P, Ishihara S, Hanyková L, Ariga K. Chiral sensing by nonchiral tetrapyrroles. Accounts of Chemical Research, 2015, 48(3): 521–529

    PubMed  CAS  Google Scholar 

  12. Kadish K M, Smith K M, Guilard R, eds. The Porphyrin Handbook. San Diego: Academic Press, 2003, 1–20

    Google Scholar 

  13. Sreenilayam G, Moore E J, Steck V, Fasan R. Stereoselective olefin cyclopropanation under aerobic conditions with an artificial enzyme incorporating an iron-chlorin e6 cofactor. ACS Catalysis, 2017, 7(11): 7629–7633

    PubMed  PubMed Central  CAS  Google Scholar 

  14. Nandipati V, Akinapelli K, Koya L, Starnes S D. Recognition of mandelate stereoisomers by chiral porphyrin hosts: Prediction of stereopreference in guest binding a priori using a simple binding model. Tetrahedron Letters, 2014, 55(5): 985–991

    CAS  Google Scholar 

  15. Ema Y, Nemugaki S, Tsuboi S, Utaka M. Synthesis and CD spectrum of chiral porphyrin dimer. Tetrahedron Letters, 1995, 36(33): 5905–5908

    CAS  Google Scholar 

  16. Hayashi T, Nonoguchi M, Aya T, Ogoshi H. Molecular recognition of α,ω-diamines by metalloporphyrin dimer. Tetrahedron Letters, 1997, 38(9): 1603–1606

    CAS  Google Scholar 

  17. Kurtán T, Nesnas N, Li Y Q, Huang X, Nakanishi K, Berova N. Chiral recognition by CD-sensitive dimeric zinc porphyrin host. 1. Chiroptical protocol for absolute configurational assignments of monoalcohols and primary monoamines. Journal of the American Chemical Society, 2001, 123(25): 5962–5973

    PubMed  Google Scholar 

  18. Borovkov V V, Fujii I, Muranaka A, Hembury G A, Tanaka T, Ceulemans A, Kobayashi N, Inoue Y. Rationalization of supramolecular chirality in a bisporphyrin system. Angewandte Chemie International Edition, 2004, 43(41): 5481–5485

    PubMed  CAS  Google Scholar 

  19. Saha B, Ikbal S A, Petrovic A G, Berova N, Rath S P. Complexation of chiral zinc-porphyrin tweezer with achiral diamines: Induction and two-step inversion of interporphyrin helicity monitored by ECD. Inorganic Chemistry, 2017, 56(7): 3849–3860

    PubMed  CAS  Google Scholar 

  20. Liu G, Yasumitsu T, Zhao L, Peng X, Wang F, Bauri A K, Aonuma S, Kimura T, Komatsu N. Preferential extraction of left- and right-handed single-walled carbon nanotubes by use of chiral diporphyrin nanotweezers. Organic & Biomolecular Chemistry, 2012, 10(30): 5830–5836

    CAS  Google Scholar 

  21. Labuta J, Ishihara S, Shundo A, Arai S, Takeoka S, Ariga K, Hill J P. Chirality sensing by non-chiral porphines. Chemistry (Weinheim an der Bergstrasse, Germany), 2011, 17(13): 3558–3561

    CAS  Google Scholar 

  22. Ishihara S, Labuta J, Futera Z, Mori S, Sato H, Ariga K, Hill J P. NMR spectroscopic determination of enantiomeric excess using small prochiral molecules: Intermolecular transfer of magnetic anisotropy in isotropic media. Journal of Physical Chemistry B, 2018, 122(19): 5114–5120

    CAS  Google Scholar 

  23. Shinoda T, Onaka M, Izumi Y. The reason why K10 is an effective promoter for meso-tetraalkylporphyrin synthesis. Chemistry Letters, 1995, 24(7): 493–494

    Google Scholar 

  24. Plamont R, Kikkawa Y, Takahashi M, Kanesato M, Giorgi M, Shun A C K, Roussel C, Balaban T S. Nanoscopic imaging of mesotetraalkylporphyrins prepared in high yields enabled by Montmorillonite K10 and 3 Å molecular sieves. Chemistry (Weinheim an der Bergstrasse, Germany), 2013, 19(34): 11293–11300

    CAS  Google Scholar 

  25. Rostami M, Rafiee L, Hassanzadeh F, Dadrass A R, Khodarahmi G A. Synthesis of some new porphyrins and their metalloderivatives as potential sensitizers in photo-dynamic therapy. Research in Pharmaceutical Sciences, 2015, 10(6): 504–513

    PubMed  PubMed Central  Google Scholar 

  26. Connors K A. Binding Constants: The Measurement of Molecular Complex Stability. New York: Wiley-Interscience, 1987, 1–432

    Google Scholar 

  27. Hirose K. A practical guide for the determination of binding constants. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2001, 39(3–4): 193–209

    CAS  Google Scholar 

  28. Henry E R, Hofrichter J. Methods in Enzymology. London: Academic Press, 1992, 210: 29–192

    Google Scholar 

  29. Malinowski E R. Factor Analysis in Chemistry. New York: Wiley-Interscience, 2002, 1–432

    Google Scholar 

  30. Březina V, Ishihara S, Lang J, Hanyková L, Ariga K, Hill J P, Labuta J. Structural modulation of chromic response: Effects of binding-site blocking in a conjugated calix[4]pyrrole chromophore. ChemistryOpen, 2018, 7(5): 323–335

    PubMed  PubMed Central  Google Scholar 

  31. Hanuš J, Chmelová K, Štěpánek J, Turpin P Y, Bok J, Rosenberg I, Točík Z. Raman spectroscopic study of triplex-like complexes of polyuridylic acid with the isopolar, non-isosteric phosphonate analogues of diadenosine monophosphate. Journal of Raman Spectroscopy, 1999, 30(8): 667–676

    Google Scholar 

  32. Zimányi L. Analysis of the bacteriorhodopsin photocycle by singular value decomposition with self-modeling: A critical evaluation using realistic simulated data. Journal of Physical Chemistry B, 2004, 108(13): 4199–4209

    Google Scholar 

  33. Zimányi L, Kulcsár Á, Lanyi J K, Sears D F, Saltiel J. Singular value decomposition with self-modeling applied to determine bacteriorhodopsin intermediate spectra: Analysis of simulated data. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96(8): 4408–4413

    PubMed  PubMed Central  Google Scholar 

  34. Brahma S, Ikbal S A, Dhamija A, Rath S P. Highly enhanced bisignate circular dichroism of ferrocene-bridged Zn(II) bisporphyrin tweezer with extended chiral substrates due to well-matched host-guest system. Inorganic Chemistry, 2014, 53(5): 2381–2395

    PubMed  CAS  Google Scholar 

  35. Brahma S, Ikbal S A, Rath S P. Synthesis, structure, and properties of a series of chiral tweezer-diamine complexes consisting of an achiral zinc(II) bisporphyrin host and chiral diamine guest: Induction and rationalization of supramolecular chirality. Inorganic Chemistry, 2014, 53(1): 49–62

    PubMed  CAS  Google Scholar 

  36. Zhang P, Wolf C. Sensing of the concentration and enantiomeric excess of chiral compounds with tropos ligand derived metal complexes. Chemical Communications, 2013, 49(62): 7010–7012

    PubMed  CAS  Google Scholar 

  37. Jung S H, Kim K Y, Ahn A, Lee S S, Choi M Y, Jaworski J, Jung J W. NMR detection of chirality and enantiopurity of amines by using benzene tricarboxamide-based hydrogelators as chiral solvating agents. New Journal of Chemistry, 2016, 40(9): 7917–7922

    CAS  Google Scholar 

  38. Wang C, Wu X, Pu L. A highly fluorescent chiral aldehyde for enantioselective fluorescent recognition in a biphasic system. Chemistry (Weinheim an der Bergstrasse, Germany), 2017, 23(45): 10749–10752

    CAS  Google Scholar 

  39. Zardi P, Wurst K, Licini G, Zonta C. Concentration-independent stereodynamic g-Probe for chiroptical enantiomeric excess determination. Journal of the American Chemical Society, 2017, 139(44): 15616–15619

    PubMed  CAS  Google Scholar 

  40. Ema T, Ouchi N, Doi T, Korenaga T, Sakai T. Highly sensitive chiral shift reagent bearing two zinc porphyrins. Organic Letters, 2005, 7(18): 3985–3988

    PubMed  CAS  Google Scholar 

  41. Ema T, Misawa S, Nemugaki S, Sakai T, Utaka M. New optically active diporphyrin having a chiral cyclophane as a spacer. Chemistry Letters, 1997, 26(6): 487–488

    Google Scholar 

  42. Borovkov V V, Lintuluoto J M, Hembury G A, Sugiura M, Arakawa R, Inoue Y. Supramolecular chirogenesis in zinc porphyrins: Interaction with bidentate ligands, formation of tweezer structures, and the origin of enhanced optical activity. Journal of Organic Chemistry, 2003, 68(19): 7176–7192

    PubMed  CAS  Google Scholar 

  43. Chen Q, Hirsch R E. A direct and simultaneous detection of zinc protoporphyrin IX, free protoporphyrin IX, and fluorescent heme degradation product in red blood cell hemosylates. Free Radical Research, 2006, 40(3): 285–294

    PubMed  CAS  Google Scholar 

  44. Fossey J S, Anslyn E V, Brittain W D G, Bull S D, Chapin B M, Le Duff C L, James T D, Lees G, Lim S, Lloyd J A C, et al. Rapid determination of enantiomeric excess via NMR spectroscopy: A research-informed experiment. Journal of Chemical Education, 2017, 94(1): 79–84

    CAS  Google Scholar 

  45. Berova N, Pescitelli G, Petrovic A G, Proni G. Probing molecular chirality by CD-sensitive dimeric metalloporphyrin hosts. Chemical Communications, 2009, 40(40): 5958–5980

    Google Scholar 

  46. Tanasova M, Anyika M, Borhan B. Sensing remote chirality: Stereochemical determination of β, γ, and δ-chiral carboxylic acids. Angewandte Chemie International Edition, 2015, 54(14): 4274–4278

    PubMed  CAS  Google Scholar 

  47. Lu W, Yang H, Li X, Wang C, Zhan X, Qi D, Bian Y, Jiang J. Chiral discrimination of diamines by a binaphthylene-bridged porphyrin dimer. Inorganic Chemistry, 2017, 56(14): 8223–8231

    PubMed  CAS  Google Scholar 

  48. Payne D T, Fossey J S, Elmes R B P. Catalysis and sensing for our environment (CASE2015) and the supramolecular chemistry Ireland meeting (SCI 2015): Dublin and Maynooth, Ireland. 8th-11th July. Supramolecular Chemistry, 2016, 28(11–12): 921–931

    CAS  Google Scholar 

Download references

Acknowledgements

This work was partly supported by World Premier International Research Center Initiative, MEXT, Japan. The authors are grateful to Japan Society for the Promotion of Science (JSPS) for a JSPS Fellowship (to D.T.P.). This work was also partially supported by JSPS KAKENHI (Coordination Asymmetry) Grant No. JP16H06518, JSPS KAKENHI Grant No. 19K05229 and CREST, JST Grant No. JPMJCR1665. This work was partly financially supported by the National Science Foundation (Grant No. 1401188 to FD). The authors thank the Catalysis and Sensing for our Environment network for essential networking opportunities [48].

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Daniel T. Payne, Jan Labuta or Jonathan P. Hill.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Payne, D.T., Chahal, M.K., Březina, V. et al. Diporphyrin tweezer for multichannel spectroscopic analysis of enantiomeric excess. Front. Chem. Sci. Eng. 14, 28–40 (2020). https://doi.org/10.1007/s11705-019-1869-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11705-019-1869-1

Keywords

Navigation