Skip to main content
Log in

Supramolecular self-assembly of two-component systems comprising aromatic amides/Schiff base and tartaric acid

  • Research Article
  • Published:
Frontiers of Chemical Science and Engineering Aims and scope Submit manuscript

Abstract

The gelating properties and thermotropic behaviors of stoichiometric mixtures of aromatic amides 1, 2, and the aromatic Schiff base 3 with tartaric acid (TA) were investigated. Among the three gelators, 2-TA exhibited superior gelating ability. Mixture 2-TA exhibits a smectic B phase and an unidentified smectic mesophase during both heating and cooling runs. The results of Fourier transform infrared spectroscopy and X-ray diffraction revealed the existence of hydrogen bonding and π-π interactions in 2-TA systems, which are likely to be the dominant driving forces for the supramolecular self-assembly. Additionally, it was established that all of the studied gel self-assemblies and mesophases possess a lamellar structure. The anion response ability of the tetrahydrofuran gel of 2-TA was evaluated and it was found that it was responsive to the stimuli of F,Cl,Br,I, AcO.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bhattacharjee S, Bhattacharya S. Orotic acid as a useful supramo-lecular synthon for the fabrication of an OPV based hydrogel: stoichiometry dependent injectable behavior. Chemical Communications, 2015, 51(31): 6765–6768

    Article  CAS  Google Scholar 

  2. Raeburn J, Adams D J. Multicomponent low molecular weight gelators. Chemical Communications, 2015, 51(25): 5170–5180

    Article  CAS  Google Scholar 

  3. Buerkle L E, Rowan S J. Supramolecular gels formed from multi-component low molecular weight species. Chemical Society Reviews, 2012, 41(18): 6089–6102

    Article  CAS  Google Scholar 

  4. Liu M H, Quyang G H, Niu D, Sang Y. Supramolecular gelaton: Towards the design of molecular gels. Organic Chemistry Frontiers: An International Journal of Organic Chemistry / Royal Society of Chemistry, 2018, 5(19): 2885–2900

    Article  CAS  Google Scholar 

  5. Tu T, Zhu H B, Fang W W, Zhang Y, Wu J J, Liu C. Advance between supramolecular gels and catalysis. Chemistry, an Asian Journal, 2018, 13(7): 712–729

    Article  Google Scholar 

  6. Verma I, Rajeev N, Mohiuddin G, Pal S K. Ordering transitions in liquid crystals triggered by bioactive cyclic amphiphiles: Potential application in label-free detection of amyloidogenic peptides. Journal of Physical Chemistry C, 2019, 123(11): 6526–6536

    Article  CAS  Google Scholar 

  7. Kato T, Mizoshita N, Kishimoto K. Functional liquid-crystalline assemblies: Self-organized soft materials. Angewandte Chemie International Edition, 2006, 45(1): 38–68

    Article  CAS  Google Scholar 

  8. Wang L Y, Liu S X, Li H M, Huang Y D. Preparation and properties of the two-component hydrogels based on pyrazine dicarboxylic acid and melamine. Chemical Journal of Chinese Universities, 2017, 38(5): 806–813

    CAS  Google Scholar 

  9. Mahapatra R D, Dey J. Instant gels from mixtures of amines and anhydrides at room temperature. Colloids and Surfaces. B, Biointerfaces, 2016, 147: 422–433

    Article  CAS  Google Scholar 

  10. Hamaguchi K, Kuo D, Liu M M, Sakamoto T, Yoshio M, Katayama H, Kato T. Nanostructured virus filtration membranes based on two component columnar liquid crystals. ACS Macro Letters, 2019, 8 (1): 24–30

    Article  CAS  Google Scholar 

  11. Mahalingam T, Venkatachalam T, Jayaprakasam R, Vijayakumar V N. Structural and thermo-optic studies on linear double hydrogen bonded ferroelectric liquid crystal homologous series. Molecular Crystals and Liquid Crystals (Philadelphia, Pa.), 2016, 641(1): 10–24

    Article  CAS  Google Scholar 

  12. Yang J H, Christianson L A, Gellman S H. Comparison of an HXH three-center hydrogen bond with alternative two-center hydrogen bonds in a model system. Organic Letters, 1999, 1(1): 11–13

    Article  CAS  Google Scholar 

  13. Deebika B, Balamurugan S, Kannan P. Liquid crystalline H-bonded polymers influenced by chiral and achiral spacers. Journal of Polymer Research, 2012, 19(7): 9920–684

    Article  Google Scholar 

  14. Yamaguchi D, Eimura H, Yoshio M, Kato T. Redox-active supramolecular fibers of a nitronyl nitroxide-based gelator. Chemistry Letters, 2016, 45(8): 863–865

    Article  CAS  Google Scholar 

  15. Takemoto Y, Uchida Y, Shimono S, Yamauchi J, Tamura R. Preparation and magnetic properties of nitroxide radical liquid crystalline physical gels. Molecular Crystals and Liquid Crystals (Philadelphia, Pa.), 2017, 647(1): 279–289

    Article  CAS  Google Scholar 

  16. Huang Y, Zhang X, Cui W, Wang X, Li B, Zhang Y, Yang J. Novel liquid crystalline organogelators based on terephthalic acid and terephthalaldehyde derivatives: Properties and promotion through the formation of halogen bonding. New Journal of Chemistry, 2020, 44(2): 614–625

    Article  CAS  Google Scholar 

  17. Bao C Y, Lu R, Jin M, Xue P C, Tan C H, Liu G F, Zhao Y, Zhao Y Y. L-Tartaric acid assisted binary organogel system: Strongly enhanced fluorescence induced by supramolecular assembly. Organic & Biomolecular Chemistry, 2005, 3(14): 2508–2512

    Article  CAS  Google Scholar 

  18. Huang Y D, Yuan Y Q, Tu W, Zhang Y, Zhang M J, Qu H M. Preparation of efficient organogelators based on pyrazine-2,5-dicarboxylic acid showing room temperature mesophase. Tetrahedron, 2015, 71(21): 3221–3230

    Article  CAS  Google Scholar 

  19. Shishido Y, Anetai H, Takedam T, Hoshino N, Noro S, Nakamura T, Akutagawa T. Molecular assembly and ferroelectric response of benzenecarboxamides bearing multiple -CONHC14H29 chains. Journal of Physical Chemistry C, 2014, 118(36): 21204–21214

    Article  CAS  Google Scholar 

  20. Feng G L, Chen H H, Cai J H, Wen J W, Liu X B. L-Phenylalanine based low-molecular-weight efficient organogelators and their selective gelation of oil from oil/water mixtures. Soft Materials, 2014, 12(4): 403–410

    Article  CAS  Google Scholar 

  21. Yamanaka M, Aoyama R. Construction of two- or three-component low molecular weight gel systems. Bulletin of the Chemical Society of Japan, 2010, 83(7): 1127–1131

    Article  CAS  Google Scholar 

  22. Xue P C, Zhang Y, Jia J H, Xu D F, Zhang X F, Liu X L, Zhou H P, Zhang P, Lu R, Takafuji M, Ihara H. Solvent-dependent photophysical and anion responsive properties of one glutamide gelator. Soft Matter, 2011, 7(18): 8296–8304

    Article  CAS  Google Scholar 

  23. Cao X H, Zhao N, Lv H T, Gao A P, Shi A P, Wu Y Q. 4-Nitrobenzene thiourea self-assembly system and its transformation upon addition of Hg2+ ion: Applications as sensor to fluoride ion. Sensors and Actuators. B, Chemical, 2018, 266: 637–644

    Article  CAS  Google Scholar 

  24. Huang Y D, Liu S X, Xie Z F, Sun Z P, Chai W, Jiang W. Novel 1,2,3-triazole-based compounds: Iodo effect on their gelation behavior and cation response. Frontiers of Chemical Science and Engineering, 2018, 12(2): 252–261

    Article  CAS  Google Scholar 

  25. Gao A P, Li Y R, Lv H T, Liu D, Zhao N, Ding Q Q, Gao X H. Melamine tunable effect in a lenalidomide-based supramolecular self-assembly system via hydrogen bonding. New Journal of Chemistry, 2017, 41(16): 7924–7931

    Article  CAS  Google Scholar 

  26. Kaczmarczyk B. FTi.r. study of hydrogen bonds in aliphatic polyesteramides. Polymer, 1998, 39(23): 5853–5860

    Article  CAS  Google Scholar 

  27. Hermansson K. Blue-shifting hydrogen bonds. Journal of Physical Chemistry A, 2002, 106(18): 4695–4702

    Article  CAS  Google Scholar 

  28. Ghosh S, Goswami K, Ghosh K. Pyrrole-based tetra-amide for hydrogen pyrophosphate (HP2O73−) and F ions in sol-gel medium. Supramolecular Chemistry, 2017, 29(12): 946–952

    Article  CAS  Google Scholar 

  29. Lin Q, Zhu X, Fu Y P, Zhang Y M, Fang R, Yang L Z, Wei T B. Rationally designed anion-responsive-organogels: Sensing F via reversible color changes in gel-gel states with specific selectivity. Soft Matter, 2014, 10(31): 5715–5723

    Article  CAS  Google Scholar 

  30. Song H H, Yoo J H, Doe J K, Lee K S, Choi Y K, Keum S R. Liquid crystal structures of spirobenzopyram derivatives. Molecular Crystals and Liquid Crystals (Philadelphia, Pa.), 2000, 349(1): 267–270

    CAS  Google Scholar 

  31. Marzec M, Popczyk J, Fąfara A, Wróbel S, Dąbrowski R. Antiferroelectric liquid crystals studied by differential scanning calorimetry and electrooptic methods. Ferroelectrics, 2002, 281(1): 123–134

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Natural Science Foundation of Tianjin (No. 15JCYBJC20100).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yaodong Huang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, X., Cui, W., Li, B. et al. Supramolecular self-assembly of two-component systems comprising aromatic amides/Schiff base and tartaric acid. Front. Chem. Sci. Eng. 14, 1112–1121 (2020). https://doi.org/10.1007/s11705-019-1865-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11705-019-1865-5

Keywords

Navigation