Skip to main content
Log in

Multifunctional antimicrobial chlorhexidine polymers by remote plasma assisted vacuum deposition

  • Research Article
  • Published:
Frontiers of Chemical Science and Engineering Aims and scope Submit manuscript

Abstract

Novel antibacterial materials for implants and medical instruments are essential to develop practical strategies to stop the spread of healthcare associated infections. This study presents the synthesis of multifunctional antibacterial nanocoatings on polydimethylsiloxane (PDMS) by remote plasma assisted deposition of sublimated chlorhexidine powders at low pressure and room temperature. The obtained materials present effective antibacterial activity against Escherichia coli K12, either by contact killing and antibacterial adhesion or by biocide agents release depending on the synthetic parameters. In addition, these multifunctional coatings allow the endure hydrophilization of the hydrophobic PDMS surface, thereby improving their biocompatibility. Importantly, cell-viability tests conducted on these materials also prove their non-cytotoxicity, opening a way for the integration of this type of functional plasma films in biomedical devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cavallaro A A, Macgregor-Ramiasa MN, Vasilev K. Antibiofouling properties of plasma-deposited oxazoline-based thin films. ACS Applied Materials & Interfaces, 2016, 8(10): 6354–6362

    Article  CAS  Google Scholar 

  2. Vähä-Nissi M, Pitkänen M, Salo E, Kenttä E, Tanskanen A, Sajavaara T, Putkonen M, Sievänen J, Sneck A, Rättö M, Karppinen M, Harlin A. Antibacterial and barrier properties of oriented polymer films with ZnO thin films applied with atomic layer deposition at low temperatures. Thin Solid Films, 2014, 562: 331–337

    Article  CAS  Google Scholar 

  3. Zhang B, Myers D, Wallace G, Brandt M, Choong P. Bioactive coatings for orthopaedic implants—recent trends in development of implant coatings. International Journal of Molecular Sciences, 2014, 15(7): 11878–11921

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Banerjee I, Pangule R C, Kane R S. Antifouling coatings: Recent developments in the design of surfaces that prevent fouling by proteins, bacteria, and marine organisms. Advanced Materials, 2011, 23(6): 690–718

    Article  CAS  PubMed  Google Scholar 

  5. Gilabert-Porres J, Martí S, Calatayud L, Ramos V, Rosell A, Borrós S. Design of a nanostructured active surface against gram-positive and gram-negative bacteria through plasma activation and in situ silver reduction. ACS Applied Materials & Interfaces, 2016, 8(1): 64–73

    Article  CAS  Google Scholar 

  6. Jiang F, Yeh C K, Wen J, Sun Y. N-Trimethylchitosan/alginate layer-by-layer self assembly coatings act as ‘fungal repellents’ to prevent biofilm formation on healthcare materials. Advanced Healthcare Materials, 2015, 4(3): 469–475

    Article  CAS  PubMed  Google Scholar 

  7. Li L, Pu T, Zhanel G, Zhao N, Ens W, Liu S. New biocide with both n-chloramine and quaternary ammonium moieties exerts enhanced bactericidal activity. Advanced Healthcare Materials, 2012, 1(5): 609–620

    Article  CAS  PubMed  Google Scholar 

  8. Wu M, He J, Ren X, Cai WS, Fang Y C, Feng X Z. Development of functional biointerfaces by surface modification of polydimethylsiloxane with bioactive chlorogenic acid. Colloids and Surfaces. B, Biointerfaces, 2014, 116: 700–706

    Article  CAS  PubMed  Google Scholar 

  9. Yu Q, Wu Z, Chen H. Dual-function antibacterial surfaces for biomedical applications. Acta Biomaterialia, 2015, 16: 1–13

    Article  CAS  PubMed  Google Scholar 

  10. Agarwal A, Nelson T B, Kierski P R, Schurr M J, Murphy C J, Czuprynski C J, McAnulty J F, Abbott N L. Polymeric multilayers that localize the release of chlorhexidine from biologic wound dressings. Biomaterials, 2012, 33(28): 6783–6792

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. He T, Zhang Y, Lai A C K, Chan V. Engineering bio-adhesive functions in an antimicrobial polymer multilayer. Biomedical Materials (Bristol, England), 2015, 10(1): 15015

    Article  CAS  Google Scholar 

  12. Verraedt E, Braem A, Chaudhari A, Thevissen K, Adams E, Van Mellaert L, Cammue B P A, Duyck J, Anné J, Vleugels J, Martens J A. Controlled release of chlorhexidine antiseptic from microporous amorphous silica applied in open porosity of an implant surface. International Journal of Pharmaceutics, 2011, 419(1-2): 28–32

    Article  CAS  PubMed  Google Scholar 

  13. Yu Q, Ge W, Atewologun A, Stiff-Roberts A D, López G P. Antimicrobial and bacteria-releasing multifunctional surfaces: Oligo (p-phenylene-ethynylene)/poly (N-isopropylacrylamide) films deposited by RIR-MAPLE. Colloids and Surfaces. B, Biointerfaces, 2015, 126: 328–334

    Article  CAS  PubMed  Google Scholar 

  14. Chang C H, Yeh S Y, Lee B H, Hsu C W, Chen Y C, Chen C J, Lin T J, Chen M H C, Huang C T, Chen H Y. Compatibility balanced antibacterial modification based on vapor-deposited parylene coatings for biomaterials. Journal of Materials Chemistry. B, Materials for Biology and Medicine, 2014, 2(48): 8496–8503

    Article  CAS  Google Scholar 

  15. Nikiforov A Y, Deng X, Onyshchenko I, Vujosevic D, Vuksanovic V, Cvelbar U, De Geyter N, Morent R, Leys C. Atmospheric pressure plasma deposition of antimicrobial coatings on non-woven textiles. European Physical Journal Applied Physics, 2016, 75(2): 24710

    Article  CAS  Google Scholar 

  16. Ostrikov K, Levchenko I, Keidar M, Cvelbar U, Mariotti D, Mai-Prochnow A, Fang J. Novel biomaterials: Plasma-enabled nanostructures and functions. Journal of Physics. D, Applied Physics, 2016, 49(27): 273001

    Article  CAS  Google Scholar 

  17. Barranco A, Groening P. Fluorescent plasma nanocomposite thin films containing nonaggregated rhodamine 6G laser dye molecules. Langmuir, 2006, 22(16): 6719–6722

    Article  CAS  PubMed  Google Scholar 

  18. Barranco A, Aparicio F, Yanguas-Gil A, Groening P, Cotrino J, González-Elipe A R. Optically active thin films deposited by plasma polymerization of dye molecules. Chemical Vapor Deposition, 2007, 13(6-7): 319–325

    Article  CAS  Google Scholar 

  19. Aparicio F J, Holgado M, Borras A, Blaszczyk-Lezak I, Griol A, Barrios C A, Casquel R, Sanza F J, Sohlstrom H, Antelius M, González-Elipe A R, Barranco A. Transparent nanometric organic luminescent films as UV-active components in photonic structures. Advanced Materials, 2011, 23(6): 761–765

    Article  CAS  PubMed  Google Scholar 

  20. Aparicio F J, Alcaire M, González-Elipe A R, Barranco A, Holgado M, Casquel R, Sanza F J, Griol A, Bernier D, Dortu F, Cáceres S, Antelius M, Lapisa M, Sohlström H, Niklaus F. Dye-based photonic sensing systems. Sensors and Actuators. B, Chemical, 2016, 228: 649–657

    Article  CAS  Google Scholar 

  21. Blaszczyk-Lezak I, Aparicio F J, Borrás A, Barranco A, Álvarez-Herrero A, Fernández-Rodríguez M, González-Elipe A R. Optically active luminescent perylene thin films deposited by plasma polymerization. Journal of Physical Chemistry C, 2009, 113(1): 431–438

    Article  CAS  Google Scholar 

  22. Aparicio F J, Alcaire M, Borras A, Gonzalez J C, López-Arbeloa F, Blaszczyk-Lezak I, González-Elipe A R, Barranco A. Luminescent 3-hydroxyflavone nanocomposites with a tuneable refractive index for photonics and UV detection by plasma assisted vacuum deposition. Journal of Materials Chemistry. C, Materials for Optical and Electronic Devices, 2014, 2(32): 6561–6573

    Article  CAS  Google Scholar 

  23. Sangamesh K, Laurencin C, Deng M, eds. Natural and Synthetic Biomedical Polymers. San Diego: Elsevier, 2014, 301–308

  24. Chen H, Brook M A, Sheardown H. Silicone elastomers for reduced protein adsorption. Biomaterials, 2004, 25(12): 2273–2282

    Article  CAS  PubMed  Google Scholar 

  25. Thevenot P, Hu W, Tang L. Surface chemistry influences implant biocompatibility. Current Topics in Medicinal Chemistry, 2008, 8 (4): 270–280

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Gilbert P, Allison D G, Brading M, Verran J, Walker J. Biofilm community interactions: Chance or necessity? Cardiff: Bioline, 2001, 11–22

    Google Scholar 

  27. Wilson C J, Clegg R E, Leavesley D I, Pearcy M J. Mediation of biomaterial-cell interactions by adsorbed proteins: A review. Tissue Engineering, 2005, 11(1-2): 1–18

    Article  CAS  PubMed  Google Scholar 

  28. Zhang H, Chiao M. Anti-fouling Coatings of poly(dimethylsiloxane) devices for biological and biomedical applications. Journal of Medical and Biological Engineering, 2014, 35(2): 143–155

    Article  Google Scholar 

  29. Larson B J, Gillmor S D, Braun J M, Cruz-Barba L E, Savage D E, Denes F S, Lagally M G. Long-term reduction in poly(dimethylsiloxane) surface hydrophobicity via cold-plasma treatments. Langmuir, 2013, 29(42): 12990–12996

    Article  CAS  PubMed  Google Scholar 

  30. Forster S, McArthur S L. Stable low-fouling plasma polymer coatings on polydimethylsiloxane. Biomicrofluidics, 2012, 6(3): 036504

    Article  CAS  PubMed Central  Google Scholar 

  31. Lee D, Yang S. Surface modification of PDMS by atmospheric-pressure plasma-enhanced chemical vapor deposition and analysis of long-lasting surface hydrophilicity. Sensors and Actuators. B, Chemical, 2012, 162(1): 425–434

    Article  CAS  Google Scholar 

  32. Kaelble D H. Dispersion-polar surface tension properties of organic solids. Journal of Adhesion, 1970, 2(2): 66–81

    Article  CAS  Google Scholar 

  33. Owens D K, Wendt R C. Estimation of the surface free energy or polymers. Journal of Applied Polymer Science, 1969, 13(8): 1741–1747

    Article  CAS  Google Scholar 

  34. Balouiri M, Sadiki M, Ibnsouda S K. Methods for in vitro evaluating antimicrobial activity: A review. Journal of Pharmaceutical Analysis, 2016, 6(2): 71–79

    Article  PubMed  Google Scholar 

  35. Mestieri L B, Gomes-Cornélio A L, Rodrigues E M, Faria G, Guerreiro-Tanomaru J M, Tanomaru-Filho M. Cytotoxicity and bioactivity of calcium silicate cements combined with niobium oxide in different cell lines. Brazilian Dental Journal, 2017, 28(1): 65–71

    Article  PubMed  Google Scholar 

  36. Aparicio F J, Borras A, Blaszczyk-Lezak I, Gröning P, Álvarez-Herrero A, Fernández-Rodríguez M, González-Elipe A R, Barranco A. Luminescent and optical properties of nanocomposite thin films deposited by remote plasma polymerization of Rhodamine 6G. Plasma Processes and Polymers, 2009, 6(1): 17–26

    Article  CAS  Google Scholar 

  37. Aparicio F J, Blaszczyk-Lezak I, Sánchez-Valencia J R, Alcaire M, González J C, Serra C, González-Elipe A R, Barranco A. Plasma deposition of perylene-adamantane nanocomposite thin films for NO2 room-temperature optical sensing. Journal of Physical Chemistry C, 2012, 116(15): 8731–8740

    Article  CAS  Google Scholar 

  38. Beamson G, Briggs D. High Resolution XPS of Organic Polymers. New York: John Wiley & Sons Ltd., 1990, 277–287

    Google Scholar 

  39. Yim J H, Fleischman M S, Rodriguez-Santiago V, Piehler L T, Williams A A, Leadore J L, Pappas D D. Development of antimicrobial coatings by atmospheric pressure plasma using a guanidine-based precursor. ACS Applied Materials & Interfaces, 2013, 5(22): 11836–11843

    Article  CAS  Google Scholar 

  40. Yook J Y, Lee M, Song K H, Jun J, Kwak S. Surface modification of poly(ethylene-2,6-naphthalate) using NH3 plasma. Macromolecular Research, 2014, 22(5): 534–540

    Article  CAS  Google Scholar 

  41. Aparicio F J, Thiry D, Laha P, Snyders R. Wide range control of the chemical composition and optical properties of propanethiol plasma polymer films by regulating the deposition temperature. Plasma Processes and Polymers, 2016, 13(8): 814–822

    Article  CAS  Google Scholar 

  42. Jiang H, Grant J T, Enlow J, Su W, Bunning T J. Surface oxygen in plasma polymerized films. Journal of Materials Chemistry, 2009, 19 (15): 2234–2239

    Article  CAS  Google Scholar 

  43. Sokrates G. Infrared and Raman Characteristic Group Frequencies: Tables and Charts. New York: Wiley-Interscience, 2001, 191–198

    Google Scholar 

  44. Kovtun A, Kozlova D, Ganesan K, Biewald C, Seipold N, Gaengler P, Arnold W H, Epple M. Chlorhexidine-loaded calcium phosphatenanoparticles for dental maintenance treatment: Combination of mineralising and antibacterial effects. RSC Advances, 2012, 2(3): 870–875

    Article  CAS  Google Scholar 

  45. Badea M, Olar R, Iliş M, Georgescu R, Călinescu M. Synthesis, characterization, and thermal decomposition of new copper (II) complex compounds with chlorhexidine. Journal of Thermal Analysis and Calorimetry, 2012, 111(3): 1763–1770

    Article  CAS  Google Scholar 

  46. Pal S, Tak Y K, Han E, Rangasamy S, Song J M. A multifunctional composite of an antibacterial higher-valent silver metallopharmaceutical and a potent wound healing polypeptide: A combined killing and healing approach to wound care. New Journal of Chemistry, 2014, 38(8): 3889–3898

    Article  CAS  Google Scholar 

  47. Holešová S, Valášková M, Hlaváè D, Madejová J, Samlíková M, Tokarský J, Pazdziora E. Antibacterial kaolinite/urea/chlorhexidine nanocomposites: Experiment and molecular modelling. Applied Surface Science, 2014, 305: 783–791

    Article  CAS  Google Scholar 

  48. Biederman H, ed. Plasma Polymer Films. London: Imperial College Press, 2004, 227–231

  49. Labay C, Canal J M, Modic M, Cvelbar U, Quiles M, Armengol M, Arbos M A, Gil F J, Canal C. Antibiotic-loaded polypropylene surgical meshes with suitable biological behaviour by plasma functionalization and polymerization. Biomaterials, 2015, 71: 132–144

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Ministerio de Economía y Competitividad of Spain, the Agencia Estatal de Investigación (AEI) and EU (FEDER program) under grant MAT2016-79866-R.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Francisco J. Aparicio or Angel Barranco.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mora-Boza, A., Aparicio, F.J., Alcaire, M. et al. Multifunctional antimicrobial chlorhexidine polymers by remote plasma assisted vacuum deposition. Front. Chem. Sci. Eng. 13, 330–339 (2019). https://doi.org/10.1007/s11705-019-1803-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11705-019-1803-6

Keywords

Navigation