Skip to main content
Log in

Synthesis and characterization of biodegradable thermoplastic elastomers derived from N′,N-bis (2-carboxyethyl)-pyromellitimide, poly(butylene succinate) and polyethylene glycol

  • Research Article
  • Published:
Frontiers of Chemical Science and Engineering Aims and scope Submit manuscript

Abstract

Biodegradable poly(ether-imide-ester) elastomers were synthesized from succinic acid, 1,4-butanediol, polyethylene glycol 1000 and N′,N-bis(2-carboxyethyl)- pyromellitimide which was derived from pyromellitic dianhydride and glycine. The chemical structures, crystallinities, thermal stabilities, mechanical properties, hydrophilicities and biodegradabilities of these elastomers were investigated. The hard segments of the linear aliphatic poly (ether-ester) exhibited monoclinic chain packing. Increasing the amount of aromatic bisimide moieties in the poly (ether-ester) reduced the crystallinity of the material and improved the thermal stability and tensile strength of the elastomers. In addition, introducing a suitable amount of aromatic bisimide moieties into the poly(ether-ester) backbones endowed the elastomers with improved biodegradability but too many aromatic bisimide groups reduced the biodegradability of the elastomers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Osswald T A, Menges G. Materials Science of Polymers for Engineers. Munich: Hanser Publishing, 2012, 3–15

    Book  Google Scholar 

  2. Li W C, Tse H F, Fok L. Plastic waste in the marine environment: A review of sources, occurrence and effects. Science of the Total Environment, 2016, 566(1): 333–349

    Article  CAS  PubMed  Google Scholar 

  3. North E J, Halden R U. Plastics and environmental health: The road ahead. Reviews on Environmental Health, 2013, 28(1): 1–8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Koelmans A A, Gouin T, Thompson R, Wallace N, Arthur C. Plastics in the marine environment. Environmental Toxicology and Chemistry, 2014, 33(1): 5–10

    Article  CAS  PubMed  Google Scholar 

  5. Sheavly S B, Register K M. Marine debris & plastics: Environmental concerns, sources, impacts and solutions. Journal of Polymers and the Environment, 2007, 15(4): 301–305

    Article  CAS  Google Scholar 

  6. Martinez J L. Environmental pollution by antibiotics and by antibiotic resistance determinants. Environmental Pollution, 2009, 157(11): 2893–2902

    Article  CAS  PubMed  Google Scholar 

  7. Geyer R, Jambeck J R, Law K L. Production, use, and fate of all plastics ever made. Science Advances, 2017, 3(7): 1–5

    Article  CAS  Google Scholar 

  8. Faure F, Corbaz M, Baecher H, De Alencastro L F. Pollution due to plastics and microplastics in lake Geneva and in the Mediterranean sea. Archives des Sciences, 2012, 65(1): 157–164

    CAS  Google Scholar 

  9. Derraik J G B. The pollution of the marine environment by plastic debris: A review. Marine Pollution Bulletin, 2002, 44(9): 842–852

    Article  CAS  PubMed  Google Scholar 

  10. Avio C G, Gorbi S, Regoli F. Plastics and microplastics in the oceans: From emerging pollutants to emerged threat. Marine Environmental Research, 2017, 128(1): 2–11

    Article  CAS  PubMed  Google Scholar 

  11. Kyrikou I, Briassoulis D. Biodegradation of agricultural plastic films: A critical review. Journal of Polymers and the Environment, 2007, 15(2): 125–150

    Article  CAS  Google Scholar 

  12. Rydz J, Sikorska W, Kyulavska M, Christova D. Polyester-based (bio)degradable polymers as environmentally friendly materials for sustainable development. International Journal of Molecular Sciences, 2015, 16(1): 564–596

    Article  CAS  Google Scholar 

  13. Sabir M I, Xu X, Li L. A review on biodegradable polymeric materials for bone tissue engineering applications. Journal of Materials Science, 2009, 44(21): 5713–5724

    Article  CAS  Google Scholar 

  14. Bonart R. Thermoplastic Elastomers. Polymer, 1979, 20(11): 1389–1403

    Article  CAS  Google Scholar 

  15. Djonlagic J, Nikolic M S. Thermoplastic Copolyester Elastomers. Handbook of Engineering and Speciality Thermoplastics: Polyethers and Polyesters. Salem: John Wiley & Sons and Scrivener Publishing, 2011, 377–427

    Google Scholar 

  16. Martello M T, Hillmyer M A. Polylactide-poly(6-methyl-ε-caprolactone)-polylactide thermoplastic elastomers. Macromolecules, 2011, 44(21): 8537–8545

    Article  CAS  Google Scholar 

  17. Zhang J W, Liu F, Wang J G, Na H N, Zhu J. Synthesis of poly (butylene terephthalate)-poly(tetramethylene glycol) copolymers using terephthalic acid as starting material: A comparation between two synthetic strategies. Chinese Journal of Polymer Science, 2015, 33(9): 1283–1293

    Article  CAS  Google Scholar 

  18. Kylmä J, Seppälä J V. Synthesis and characterization of a biodegradable thermoplastic poly(ester-urethane) elastomer. Macromolecules, 1997, 30(10): 2876–2882

    Article  Google Scholar 

  19. Li Y, Shimizu H. Toughening of polylactide by melt blending with a biodegradable poly(ether)urethane elastomer. Macromolecular Bioscience, 2007, 7(7): 921–928

    Article  CAS  PubMed  Google Scholar 

  20. Huang X, Li C, Zheng L, Zhang D, Guan G, Xiao Y. Synthesis, characterization and properties of biodegradable poly(butylene succinate)-block-poly(propylene glycol) segmented copolyesters. Polymer International, 2009, 58(8): 893–899

    Article  CAS  Google Scholar 

  21. Huang S, Jiang S. Structures and morphologies of biocompatible and biodegradable block copolymers. RSC Advances, 2014, 4(47): 24566–24583

    Article  CAS  Google Scholar 

  22. Nakayama Y, Aihara K, Yamanishi H, Fukuoka H, Tanaka R, Cai Z, Shiono T. Synthesis of biodegradable thermoplastic elastomers from ε-caprolactone and lactide. Journal of Polymer Science. Part A, Polymer Chemistry, 2015, 53(3): 489–495

    Article  CAS  Google Scholar 

  23. Qiu H, Yang Z, Shah M I, Mao Z, Ling J. [PCL-b-P(THF-co-CL)]m multiblock copolymer synthesized by Janus polymerization. Polymer, 2017, 128(16): 71–77

    Article  CAS  Google Scholar 

  24. Taguchi S. Designer enzyme for green materials innovation: Lactate-polymerizing enzyme as a key catalyst. Frontiers of Chemical Science and Engineering, 2017, 11(1): 139–142

    Article  CAS  Google Scholar 

  25. Lee CW, Masutani K, Kimura Y. Ring-opening polymerization of a macrocyclic lactone monomer isolated from oligomeric byproducts of poly(butylene succinate) (PBS): An efficient route to highmolecular-weight PBS and block copolymers of PBS. Polymer, 2014, 55(22): 5673–5679

    Article  CAS  Google Scholar 

  26. Oishi A, Zhang M, Nakayama K, Masuda T, Taguchi Y. Synthesis of poly(butylene succinate) and poly(ethylene succinate) including diglycollate moiety. Polymer Journal, 2006, 38(7): 710–715

    Article  CAS  Google Scholar 

  27. Shinozaki Y, Morita T, Cao X, Yoshida S, Koitabashi M, Watanabe T, Suzuki K, Sameshima-Yamashita Y, Nakajima-Kambe T, Fujii T, Kitamoto H K. Biodegradable plastic-degrading enzyme from Pseudozyma antarctica: Cloning, sequencing, and characterization. Applied Microbiology and Biotechnology, 2013, 97(7): 2951–2959

    Article  CAS  PubMed  Google Scholar 

  28. Zhang Y, Feng Z, Zhang A. Synthesis and characterization of poly (butylene terephthalate)-co-poly(butylene succinate)-block-poly (ethylene glycol) segmented block copolymers. Polymer International, 2003, 52(8): 1351–1358

    Article  CAS  Google Scholar 

  29. Lin S, Lan J, Guo R, Shang J, He W. Preparation, mechanical properties and thermal degradation kinetics of a novel poly(esterether-imide) elastomer based on N′,N-bis(2-hydroxyethyl)-pyromellitimide unit. Journal of Macromolecular Science, Part A: Pure and Applied Chemistry, 2013, 50(4): 426–434

    Article  CAS  Google Scholar 

  30. Oprea S. Novel quinoline-based polyurethane elastomers. The effect of the hard segment structure in properties enhancement. Journal of Polymer Research, 2012, 19(19): 9769–9778

    Google Scholar 

  31. Ku C, Lee Y. Microphase separation in amorphous poly(imide siloxane) segmented copolymers. Polymer, 2007, 48(12): 3565–3573

    Article  CAS  Google Scholar 

  32. Yeganeh H, Shamekhi M A. Poly(urethane-imide-imide), a new generation of thermoplastic polyurethane elastomers with enhanced thermal stability. Polymer, 2004, 45(2): 359–365

    Article  CAS  Google Scholar 

  33. Mehdipour-Ataei S, Amirshaghaghi A. Novel thermally stable poly (ether imide ester)s from 2,6-bis(4-aminophenoxy) pyridine. Journal of Applied Polymer Science, 2009, 6(2): 570–576

    Article  CAS  Google Scholar 

  34. Lin S, Guo R, Lan J, Chen S, Shang J. Synthesis and properties of novel thermoplastic poly(ester-ether-imide) elastomers derived from 4,4′-bis(N-trimellitimide)-diphenylether unit with excellent thermal stability. Journal of Macromolecular Science, Part A: Pure and Applied Chemistry, 2012, 49(12): 1052–1060 doi:10.1080/10601325.2012.728473

    Article  CAS  Google Scholar 

  35. Shang J, Yao G, Lin S, Lan J, Huang X, He W. Synthesis and properties of novel thermal stable thermoplastic poly(ester-imideether) elastomers based on N,N′-bis(2-carboxyethyl)-3,3′,4,4′ biphenyltetracarboxylimide unit with excellent mechanical properties. Journal of Macromolecular Science, Part A: Pure and Applied Chemistry, 2013, 50(12): 1218–1224

    Article  CAS  Google Scholar 

  36. Lin S, He W, Lan J, Guo R, Shang J, Chen S. Synthesis and characterization of new thermoplastic poly(ester-ether-imide) elastomers derived from N′,N-bis(2-hydroxyethyl)-pyromellitimide unit with excellent thermal stability and good fiber-forming property. Journal of Macromolecular Science, Part A: Pure and Applied Chemistry, 2013, 50(4): 416–425

    Article  CAS  Google Scholar 

  37. Lin S, Shang J, Lan J, Guo R, Huang X, He W. Mechanical properties and thermal degradation kinetics of a novel thermally stable thermoplastic poly(ester-ether) elastomer containing N′,N-bis (2-carboxymethyl) pyromellitimide unit. Journal of Macromolecular Science, Part A: Pure and Applied Chemistry, 2013, 50(10): 1060–1069

    Article  CAS  Google Scholar 

  38. Tsou C, Kao B, Suen M, Yang M, Wu T, Tsou C, Chen J. Crystallisation behaviour and biocompatibility of poly(butylene succinate)/poly(lactic acid) composites. Materials Research Innovations, 2014, 18(2): 372–376

    Google Scholar 

  39. Zhang M, Gu J, Zhu X, Gao L, Li X, Yang X, Tu Y, Li C Y. Synthesis of poly(butylene terephthalate)-block-poly(ethylene oxide)-block-poly(propylene oxide)-block-poly(ethylene oxide) multiblock terpolymers via a facile PROP method. Polymer, 2017, 130(9): 199–208

    Article  CAS  Google Scholar 

  40. Debuissy T, Pollet E, Avérous L. Synthesis and characterization of block poly(ester-ether-urethane)s from bacterial poly(3-hydroxybu-tyrate) oligomers. Journal of Polymer Science. Part A, Polymer Chemistry, 2017, 55(11): 1949–1961

    Article  CAS  Google Scholar 

  41. Saeed A, Erben M F, Bolte M. Twisted imide bond in noncyclic imides. Synthesis and structural and vibrational properties of N,Nbis( furan-2-carbonyl)-4-chloroaniline. Journal of Organic Chemistry, 2012, 77(10): 4688–4695

    CAS  Google Scholar 

Download references

Acknowledgements

The financial support of this research was provided by the National Natural Science Foundation of China (Grant No. 50973064).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianwu Lan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shang, J., Yao, G., Guo, R. et al. Synthesis and characterization of biodegradable thermoplastic elastomers derived from N′,N-bis (2-carboxyethyl)-pyromellitimide, poly(butylene succinate) and polyethylene glycol. Front. Chem. Sci. Eng. 12, 457–466 (2018). https://doi.org/10.1007/s11705-018-1716-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11705-018-1716-9

Keywords

Navigation