Skip to main content
Log in

Design, synthesis, biological activity and density function theory study of pyrazole derivatives containing 1,3,4-thiadiazole moiety

  • Research Article
  • Published:
Frontiers of Chemical Science and Engineering Aims and scope Submit manuscript

Abstract

A variety of pyrazole derivatives containing 1,3,4-thiadiazole moiety were synthesized under micro-wave irradiation, and their structures were confirmed by 1H NMR and HRMS. They were evaluated for herbicidal and antifungal activities, and the results indicated that two compounds with a phenyl group (6a) and 4-tert-butylphenyl group (6n) possess good herbicidal activity for dicotyledon Brassica campestris and Raphanus sativus with the inhibition of 90% for root and 80%–90% for stalk at 100 ppm respectively. The structure-activity relationship of compounds 6a and 6n was also studied by density function theory method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lei K, Sun D W, Hua X W, Tao Y Y, Xu X H, Kong C H. Synthesis, fungicidal activity and structure-activity relationships of 3-benzoyl-4-hydroxylcoumarin derivatives. Pest Management Science, 2016, 72(7): 1381–1389

    Article  CAS  Google Scholar 

  2. Li M, Liu C L, Zhang J, Wu Q, Hao S L, Song Y Q. Design, synthesis and structure-activity relationship of novel insecticidal dichloro-allyloxy-phenol derivatives containing substituted pyrazol-3-ols. Pest Management Science, 2013, 69(5): 635–641

    Article  CAS  Google Scholar 

  3. Gan X H, Hu D Y, Li P, Wu J, Chen X W, Xue W, Song B A. Design, synthesis, antiviral activity and three-dimensional quantitative structure-activity relationship study of novel 1,4-pentadien-3-one derivatives containing the 1,3,4-oxadiazole moiety. Pest Management Science, 2016, 72(3): 534–543

    Article  CAS  Google Scholar 

  4. Bera H, Dolzhenko A V, Sun L Y, Gupta S D, Chui W K. Synthesis and in vitro evaluation of 1,2,4-triazolo[1,5-a][1,3,5]triazine derivatives as thymidine phosphorylase inhibitors. Chemical Biology & Drug Design, 2013, 82(3): 351–360

    Article  CAS  Google Scholar 

  5. Xiao Y S, Yan X J, Xu Y J, Huang J X, Yuan H Z, Liang X M, Zhang J J, Wang D Q. Design synthesis and fungicidal activity of 1,1-alkoxyimino-5,6-dihydro-dibenzo[b,e]azepine-6-one derivatives. Pest Management Science, 2013, 69(7): 814–826

    Article  CAS  Google Scholar 

  6. Ramprasad J, Nayak N, Dalimba U, Yogeeswari P, Sriram D. Onepot synthesis of new triazole-imidazo[2,1-b][1,3,4]thiadiazole hybrids via click chemistry and evaluation of their antitubercular activity. Bioorganic & Medicinal Chemistry Letters, 2015, 25(19): 4169–4173

    Article  CAS  Google Scholar 

  7. Ramprasad J, Nayak N, Dalimba U, Yogeeswari P, Sriram D. Ionic liquid-promoted one-pot synthesis of thiazole-imidazo[2,1-b][1,3,4] thiadiazole hybrids and their antitubercular activity. MedChem-Comm, 2016, 7(2): 338–344

    Article  CAS  Google Scholar 

  8. Romagnoli R, Baraldi P G, Prencipe F, Balzarini J, Liekens S, Estevez F. Design synthesis and antiproliferative activity of novel heterobivalent hybrids based on imidazo[2,1-b][1,3,4]thiadiazole and imidazo[2,1-b][1,3]thiazole scaffolds. European Journal of Medicinal Chemistry, 2015, 101: 205–217

    Article  CAS  Google Scholar 

  9. Zhang L J, Yang MY, Sun Z H, Tan C X, Weng J Q, Wu H K, Liu X H. Synthesis and antifungal activity of 1,3,4-thiadiazole derivatives containing pyridine group. Letters in Drug Design & Discovery, 2014, 11(9): 1107–1111

    Article  CAS  Google Scholar 

  10. Yan S L, Yang MY, Sun Z H, Min L J, Tan C X, Weng J Q, Wu H K, Liu X H. Synthesis and antifungal activity of 1,2,3-thiadiazole derivatives containing 1,3,4-thiadiazole moiety. Letters in Drug Design & Discovery, 2014, 11(7): 940–943

    Article  CAS  Google Scholar 

  11. Maddila S, Gorle S, Singh M, Lavanya P, Jonnalagadda S B. Synthesis and anti-inflammatory activity of fused 1,2,4-triazolo-[3,4-b][1,3,4]thiadiazole derivatives of phenothiazine. Letters in Drug Design & Discovery, 2013, 10: 977–983

    Article  CAS  Google Scholar 

  12. Barbuceanu S F, Ilies D C, Radulescu V, Socea L I, Draghici C, Saramet G. Synthesis, characterization and antioxidant activity evaluation of some 1,3,4-thiadiazole and 1,3,4-oxadiazole compounds. Revista de Chimie, 2014, 65: 1172–1175

    CAS  Google Scholar 

  13. Skrzypek A, Matysiak J, Karpinska MM, Niewiadomy A. Synthesis and anticholinesterase activities of novel 1,3,4-thiadiazole based compounds. Journal of Enzyme Inhibition and Medicinal Chemistry, 2013, 28(4): 816–823

    Article  CAS  Google Scholar 

  14. Bhinge S D, Chature V, Sonawane L V. Synthesis of some novel 1,3,4-thiadiazole derivatives and biological screening for antimicrobial antifungal and anthelmintic activity. Pharmaceutical Chemistry Journal, 2015, 49(6): 367–372

    Article  CAS  Google Scholar 

  15. Zhu H L, Liu Y W, Liu W W, Yin F J, Cao Z L, Bao J, Li M, Qin L Y, Shi D H. Synthesis characterisation and acetylcholinesteraseinhibition activities of 5-benzyl-1,3,4-thiadiazol-2-amine derivatives. Journal of Chemical Research, 2016, 1(1): 16–20

    Article  Google Scholar 

  16. Gomha S M, Salaheldin T A, Hassaneen H M E, Abdel-Aziz H M, Khedr M A. Synthesis, characterization and molecular docking of novel bioactive thiazolyl-thiazole derivatives as promising cytotoxic antitumor drug. Molecules (Basel, Switzerland), 2016, 21(1): 3

    Article  Google Scholar 

  17. Liu Y J, Feng G B, Ma Z H, Xu C, Guo Z, Gong P, Xu L Y. Synthesis and anti-hepatitis B virus evaluation of 7-methoxy-3-heterocyclic quinolin-6-ols. Archiv der Pharmazie, 2015, 348(11): 776–785

    Article  CAS  Google Scholar 

  18. Zhai Z W, Shi Y X, Yang M Y, Zhao W, Sun Z H, Weng J Q, Tan C X, Liu X H, Li B J, Zhang Y G. Microwave assisted synthesis and antifungal activity of some novel thioethers containing 1,2,4-triazolo[4,3-a]pyridine moiety. Letters in Drug Design & Discovery, 2016, 13(6): 521–525

    Article  CAS  Google Scholar 

  19. Balbaa M, Shibli A, Hosna R, Yusef H, Boraei A T A, El Ashry E H. Biological effect of glycosyl-oxadiazolinethione and glycosylsulfanyloxadiazole derivatives through their in vitro inhibition of glycosidases from bacteria and normal or diabetic rats. Letters in Drug Design & Discovery, 2015, 12(3): 211–218

    Article  CAS  Google Scholar 

  20. Qi D Q, You J Z, Wang X J, Zhang Y P. Synthesis crystal structures and xanthine oxidase inhibitory activity of 2-(benzylthio)-5-[1-(4-fluorobenzyl)-3-phenyl-1H-pyrazol-5-yl]-1,3,4-oxadiazoles derivatives. Journal of Chemical Research, 2008, 12: 706–710

    Google Scholar 

  21. Bhat M A, Al-Omar M A, Naglah A M, Abdulla M M, Fun H K. Synthesis and antitumor activity of 4-cyclohexyl/aryl-5-(pyridin-4-yl)-2,4-dihydro-3H-1,2,4-triazole-3-thiones. Medicinal Chemistry Research, 2015, 24(4): 1558–1567

    Article  CAS  Google Scholar 

  22. Abdel-Hamid M K, Abdel-Hafez A A, El-Koussi N A, Mahfouz N M, Innocenti A, Supuran C T. Design, synthesis, and docking studies of new 1,3,4-thiadiazole-2-thione derivatives with carbonic anhydrase inhibitory activity. Bioorganic & Medicinal Chemistry, 2007, 15(22): 6975–6984

    Article  CAS  Google Scholar 

  23. Zhao W, Xing J, Xu T, Peng W, Liu X. Synthesis and in vivo nematocidal evaluation of novel 3-(trifluoromethyl)-1H-pyrazole-4-carboxamide derivatives. Frontiers of Chemical Science and Engineering, 2017, DOI: 10.1007/s11705-016-1595-x

    Google Scholar 

  24. Ningaiah S, Bhadraiah U K, Doddaramappa S D, Keshavamurthy S, Javarasetty C. Novel pyrazole integrated 1,3,4-oxadiazoles: Synthesis, characterization and antimicrobial evaluation. Bioorganic & Medicinal Chemistry Letters, 2014, 24(1): 245–248

    Article  CAS  Google Scholar 

  25. Frisch M J, Trucks G W, Schlegel H B, Scuseria G E, Robb M A, Cheeseman J R, Montgomery J A, Vreven T, Kudin K N, Burant J C, et al. Gaussian 03, Revision C. 01. Wallingford, CT: Gaussian, Inc., 2004

    Google Scholar 

  26. Wang Z J, Gao Y, Hou Y L, Zhang C, Yu S J, Bian Q, Li Z M, Zhao W G. Design, synthesis, and fungicidal evaluation of a series of novel 5-methyl-1H-1,2,3-trizole-4-carboxyl amide and ester analogues. European Journal of Medicinal Chemistry, 2014, 68: 87–94

    Article  Google Scholar 

  27. Patil R, Bhand S, Konkimalla V B, Banerjee P, Ugale B, Chadar D, Saha S K, Praharaj P P, Nagaraja C M, Chakrovarty D, et al. Molecular association of 2-(n-alkylamino)-1,4-naphthoquinone derivatives: Electrochemical, DFT studies and antiproliferative activity against leukemia cell lines. Journal of Molecular Structure, 2016, 1125: 272–281

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported financially by Zhejiang Provincial Science Foundation of China (No. LY16C140007) and Research Institute Special Program of Department of Science and Technology of Zhejiang Province (No. 2015F50030).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xinghai Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ding, X., Zhai, Z., Lv, L. et al. Design, synthesis, biological activity and density function theory study of pyrazole derivatives containing 1,3,4-thiadiazole moiety. Front. Chem. Sci. Eng. 11, 379–386 (2017). https://doi.org/10.1007/s11705-017-1634-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11705-017-1634-2

Keywords

Navigation