Skip to main content
Log in

Iron oxide nanoparticle-based theranostics for cancer imaging and therapy

  • Review Article
  • Published:
Frontiers of Chemical Science and Engineering Aims and scope Submit manuscript

Abstract

Theranostic platform, which is equipped with both diagnostic and therapeutic functions, is a promising approach in cancer treatment. From various nanotheranostics studied, iron oxide nanoparticles have advantages since IONPs have good biocompatibility and spatial imaging capability. This review is focused on the IONP-based nanotheranostics for cancer imaging and treatment. The most recent progress for applications of IONP nanotheranostics is summarized, which includes IONP-based diagnosis, magnetic resonance imaging (MRI), multimodal imaging, chemotherapy, hyperthermal therapy, photodynamic therapy, and gene delivery. Future perspectives and challenges are also outlined for the potential development of IONP based theranostics in clinical use.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Tietze R, Lyer S, Dürr S, Alexiou C. Nanoparticles for cancer therapy using magnetic forces. Nanomedicine-UK, 2012, 7(3): 447–457

    Article  CAS  Google Scholar 

  2. Zhang Z, Wang J, Chen C. Near-infrared light-mediated nanoplatforms for cancer thermo-chemotherapy and optical imaging. Advanced Materials, 2013, 25(28): 3869–3880

    Article  CAS  Google Scholar 

  3. Yuan A, Wu J, Tang X, Zhao L, Xu F, Hu Y. Application of nearinfrared dyes for tumor imaging, photothermal, and photodynamic therapies. Journal of Pharmaceutical Sciences, 2013, 102(1): 6–28

    Article  CAS  Google Scholar 

  4. Menon J U, Jadeja P, Tambe P, Vu K, Yuan B, Nguyen K T. Nanomaterials for photo-based diagnostic and therapeutic applications. Theranostics, 2013, 3(3): 152–166

    Article  CAS  Google Scholar 

  5. Ryu J H, Koo H, Sun I C, Yuk S H, Choi K, Kim K, Kwon I C. Tumor-targeting multi-functional nanoparticles for theragnosis: new paradigm for cancer therapy. Advanced Drug Delivery Reviews, 2012, 64(13): 1447–1458

    Article  CAS  Google Scholar 

  6. Xie J, Lee S, Chen X. Nanoparticle-based theranostic agents. Advanced Drug Delivery Reviews, 2010, 62(11): 1064–1079

    Article  CAS  Google Scholar 

  7. Ho D, Sun X, Sun S. Monodisperse magnetic nanoparticles for theranostic applications. Accounts of Chemical Research, 2011, 44(10): 875–882

    Article  CAS  Google Scholar 

  8. Sun S, Zeng H, Robinson D B, Raoux S, Rice PM, Wang S X, Li G. Monodisperse MFe2O4 (M = Fe, Co, Mn) nanoparticles. Journal of the American Chemical Society, 2004, 126(1): 273–279

    Article  CAS  Google Scholar 

  9. Laurent S, Forge D, Port M, Roch A, Robic C, Vander Elst L, Muller R N. Magnetic iron oxide nanoparticles: synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications. Chemical Reviews, 2008, 108(6): 2064–2110

    Article  CAS  Google Scholar 

  10. Park J, Lee E, Hwang N M, Kang M, Kim S C, Hwang Y, Park J G, Noh H J, Kim J Y, Park J H, Hyeon T. One-nanometer-scale sizecontrolled synthesis of monodisperse magnetic iron oxide nanoparticles. Angewandte Chemie International Edition in English, 2005, 44(19): 2873–2877

    Google Scholar 

  11. Huang J, Zhong X, Wang L, Yang L, Mao H. Improving the magnetic resonance imaging contrast and detection methods with engineered magnetic nanoparticles. Theranostics, 2012, 2(1): 86–102

    Article  CAS  Google Scholar 

  12. Huang Y, He S, Cao W, Cai K, Liang X J. Biomedical nanomaterials for imaging-guided cancer therapy. Nanoscale, 2012, 4(20): 6135–6149

    Article  CAS  Google Scholar 

  13. Wang J, Huang Y, David A E, Chertok B, Zhang L, Yu F, Yang V C. Magnetic nanoparticles for MRI of brain tumors. Current Pharmaceutical Biotechnology, 2012, 13(12): 2403–2416

    Article  CAS  Google Scholar 

  14. Psimadas D, Baldi G, Ravagli C, Comes Franchini M, Locatelli E, Innocenti C, Sangregorio C, Loudos G. Comparison of the magnetic, radiolabeling, hyperthermic and biodistribution properties of hybrid nanoparticles bearing CoFe2O4 and Fe3O4 metal cores. Nanotechnology, 2014, 25(2): 025101

    Article  CAS  Google Scholar 

  15. Lee S H, Kim B H, Na H B, Hyeon T. Paramagnetic inorganic nanoparticles as T1 MRI contrast agents. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2014, 6(2): 196–209

    CAS  Google Scholar 

  16. Xiao N, Gu W, Wang H, Deng Y, Shi X, Ye L. T1-T2 dual-modal MRI of brain gliomas using PEGylated Gd-doped iron oxide nanoparticles. Journal of Colloid and Interface Science, 2014, 417: 159–165

    Article  CAS  Google Scholar 

  17. Ragheb R R T, Kim D, Bandyopadhyay A, Chahboune H, Bulutoglu B, Ezaldein H, Criscione J M, Fahmy T M. Induced clustered nanoconfinement of superparamagnetic iron oxide in biodegradable nanoparticles enhances transverse relaxivity for targeted theranostics. Magnetic Resonance in Medicine, 2013, 70(6): 1748–1760

    Article  CAS  Google Scholar 

  18. Balasubramaniam S, Kayandan S, Lin Y N, Kelly D F, House M J, Woodward R C, St Pierre T G, Riffle J S, Davis RM. Toward design of magnetic nanoparticle clusters stabilized by biocompatible diblock copolymers for T?-weighted MRI contrast. Langmuir, 2014, 30(6): 1580–1587

    Article  CAS  Google Scholar 

  19. Tähkä S, Laiho A, Kostiainen M A. Diblock-copolymer-mediated self-assembly of protein-stabilized iron oxide nanoparticle clusters for magnetic resonance imaging. Chemistry, 2014, 20(10): 2718–2722

    Article  Google Scholar 

  20. Lee G Y, Qian W P, Wang L, Wang Y A, Staley C A, Satpathy M, Nie S, Mao H, Yang L. Theranostic nanoparticles with controlled release of gemcitabine for targeted therapy and MRI of pancreatic cancer. ACS Nano, 2013, 7(3): 2078–2089

    Article  CAS  Google Scholar 

  21. Zhang L, Zhong X, Wang L, Chen H, Wang Y A, Yeh J, Yang L, Mao H. T1-weighted ultrashort echo time method for positive contrast imaging of magnetic nanoparticles and cancer cells bound with the targeted nanoparticles. Journal of Magnetic Resonance Imaging, 2011, 33(1): 194–202

    Article  Google Scholar 

  22. Xie J, Liu G, Eden H S, Ai H, Chen X. Surface-engineered magnetic nanoparticle platforms for cancer imaging and therapy. Accounts of Chemical Research, 2011, 44(10): 883–892

    Article  CAS  Google Scholar 

  23. Lin X, Xie J, Niu G, Zhang F, Gao H, Yang M, Quan Q, Aronova M A, Zhang G, Lee S, Leapman R, Chen X. Chimeric ferritin nanocages for multiple function loading and multimodal imaging. Nano Letters, 2011, 11(2): 814–819

    Article  CAS  Google Scholar 

  24. Chen Y C, Wen S, Shang S A, Cui Y, Luo B, Teng G J. Magnetic resonance and near-infrared imaging using a novel dual-modality nano-probe for dendritic cell tracking in vivo. Cytotherapy, 2014, 16(5): 699–710

    Article  CAS  Google Scholar 

  25. Lee H Y, Li Z, Chen K, Hsu A R, Xu C, Xie J, Sun S, Chen X. PET/MRI dual-modality tumor imaging using arginine-glycine-aspartic (RGD)-conjugated radiolabeled iron oxide nanoparticles. Journal of Nuclear Medicine, 2008, 49(8): 1371–1379

    Article  CAS  Google Scholar 

  26. Xie J, Chen K, Huang J, Lee S, Wang J, Gao J, Li X, Chen X. PET/NIRF/MRI triple functional iron oxide nanoparticles. Biomaterials, 2010, 31(11): 3016–3022

    Article  CAS  Google Scholar 

  27. Key J, Cooper C, Kim A Y, Dhawan D, Knapp D W, Kim K, Park J H, Choi K, Kwon I C, Park K, Leary J F. In vivo NIRF and MR dualmodality imaging using glycol chitosan nanoparticles. Journal of Controlled Release, 2012, 163(2): 249–255

    Article  CAS  Google Scholar 

  28. Sun Z, Huang P, Tong G, Lin J, Jin A, Rong P, Zhu L, Nie L, Niu G, Cao F, Chen X. VEGF-loaded graphene oxide as theranostics for multi-modality imaging-monitored targeting therapeutic angiogenesis of ischemic muscle. Nanoscale, 2013, 5(15): 6857–6866

    Article  CAS  Google Scholar 

  29. Key J, Aryal S, Gentile F, Ananta J S, Zhong M, Landis M D, Decuzzi P. Engineering discoidal polymeric nanoconstructs with enhanced magneto-optical properties for tumor imaging. Biomaterials, 2013, 34(21): 5402–5410

    Article  CAS  Google Scholar 

  30. Cao C, Wang X, Cai Y, Sun L, Tian L, Wu H, He X, Lei H, Liu W, Chen G, Zhu R, Pan Y. Targeted in vivo imaging of microscopic tumors with ferritin-based nanoprobes across biological barriers. Advanced Materials, 2014, 26(16): 2566–2571

    Article  CAS  Google Scholar 

  31. Zhang Y, Zhang B, Liu F, Luo J, Bai J. In vivo tomographic imaging with fluorescence and MRI using tumor-targeted dual-labeled nanoparticles. International Journal of Nanomedicine, 2014, 9: 33–41

    Google Scholar 

  32. Zou P, Chen H, Paholak H J, Sun D. Noninvasive fluorescence resonance energy transfer imaging of in vivo premature drug release from polymeric nanoparticles. Molecular Pharmaceutics, 2013, 10(11): 4185–4194

    Article  CAS  Google Scholar 

  33. Niu C, Wang Z, Lu G, Krupka T M, Sun Y, You Y, Song W, Ran H, Li P, Zheng Y. Doxorubicin loaded superparamagnetic PLGA-iron oxide multifunctional microbubbles for dual-mode US/MR imaging and therapy of metastasis in lymph nodes. Biomaterials, 2013, 34(9): 2307–2317

    Article  CAS  Google Scholar 

  34. Chertok B, David A E, Yang V C. Brain tumor targeting of magnetic nanoparticles for potential drug delivery: effect of administration route and magnetic field topography. Journal of Controlled Release, 2011, 155(3): 393–399

    Article  CAS  Google Scholar 

  35. Ye F, Barrefelt A, Asem H, Abedi-Valugerdi M, El-Serafi I, Saghafian M, Abu-Salah K, Alrokayan S, Muhammed M, Hassan M. Biodegradable polymeric vesicles containing magnetic nanoparticles, quantum dots and anticancer drugs for drug delivery and imaging. Biomaterials, 2014, 35(12): 3885–3894

    Article  CAS  Google Scholar 

  36. Javid A, Ahmadian S, Saboury A A, Kalantar SM, Rezaei-Zarchi S, Shahzad S. Biocompatible APTES-PEG modified magnetite nanoparticles: Effective carriers of antineoplastic agents to ovarian cancer. Applied Biochemistry and Biotechnology, 2014, 173(1): 36–54

    Article  CAS  Google Scholar 

  37. Zou P, Yu Y, Wang Y A, Zhong Y, Welton A, Galbán C, Wang S, Sun D. Superparamagnetic iron oxide nanotheranostics for targeted cancer cell imaging and pH-dependent intracellular drug release. Molecular Pharmaceutics, 2010, 7(6): 1974–1984

    Article  CAS  Google Scholar 

  38. El-Dakdouki M H, Zhu D C, El-Boubbou K, Kamat M, Chen J, Li W, Huang X. Development of multifunctional hyaluronan-coated nanoparticles for imaging and drug delivery to cancer cells. Biomacromolecules, 2012, 13(4): 1144–1151

    Article  CAS  Google Scholar 

  39. Zhang J, Shin M C, Yang V C. Magnetic targeting of novel heparinized iron oxide nanoparticles evaluated in a 9L-glioma mouse model. Pharmaceutical Research, 2014, 31(3): 579–592

    Article  CAS  Google Scholar 

  40. Zhang J, Shin M C, David A E, Zhou J, Lee K, He H, Yang V C. Long-circulating heparin-functionalized magnetic nanoparticles for potential application as a protein drug delivery platform. Molecular Pharmaceutics, 2013, 10(10): 3892–3902

    CAS  Google Scholar 

  41. Chiang WH, Huang WC, Chang CW, Shen M Y, Shih Z F, Huang Y F, Lin S C, Chiu H C. Functionalized polymersomes with outlayered polyelectrolyte gels for potential tumor-targeted delivery of multimodal therapies and MR imaging. Journal of Controlled Release, 2013, 168(3): 280–288

    Article  CAS  Google Scholar 

  42. Gupta A K, Gupta M. Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials, 2005, 26(18): 3995–4021

    Article  CAS  Google Scholar 

  43. Ito A, Shinkai M, Honda H, Kobayashi T. Medical application of functionalized magnetic nanoparticles. Journal of Bioscience and Bioengineering, 2005, 100(1): 1–11

    Article  CAS  Google Scholar 

  44. Chen H W, Burnett J, Zhang F X, Zhang J M, Paholak H, Sun D X. Highly crystallized iron oxide nanoparticles as effective and biodegradable mediators for photothermal cancer therapy. Journal of Materials Chemistry B, 2014, 2(7): 757–765

    Article  CAS  Google Scholar 

  45. Maier-Hauff K, Rothe R, Scholz R, Gneveckow U, Wust P, Thiesen B, Feussner A, von Deimling A, Waldoefner N, Felix R, Jordan A. Intracranial thermotherapy using magnetic nanoparticles combined with external beam radiotherapy: results of a feasibility study on patients with glioblastoma multiforme. Journal of Neuro-Oncology, 2007, 81(1): 53–60

    Article  CAS  Google Scholar 

  46. Béalle G, Di Corato R, Kolosnjaj-Tabi J, Dupuis V, Clément O, Gazeau F, Wilhelm C, Ménager C. Ultra magnetic liposomes for MR imaging, targeting, and hyperthermia. Langmuir, 2012, 28(32): 11834–11842

    Article  Google Scholar 

  47. Johannsen M, Thiesen B, Wust P, Jordan A. Magnetic nanoparticle hyperthermia for prostate cancer. International Journal of Hyperthermia, 2010, 26(8): 790–795

    Article  Google Scholar 

  48. Silva A C, Oliveira T R, Mamani J B, Malheiros S M, Malavolta L, Pavon L F, Sibov T T, Amaro E Jr, Tannús A, Vidoto E L, Martins M J, Santos R S, Gamarra L F. Application of hyperthermia induced by superparamagnetic iron oxide nanoparticles in glioma treatment. International Journal of Nanomedicine, 2011, 6: 591–603

    CAS  Google Scholar 

  49. Laurent S, Dutz S, Häfeli U O, Mahmoudi M. Magnetic fluid hyperthermia: focus on superparamagnetic iron oxide nanoparticles. Advances in Colloid and Interface Science, 2011, 166(1–2): 8–23

    CAS  Google Scholar 

  50. Chiang W H, Ho V T, Chen H H, Huang W C, Huang Y F, Lin S C, Chern C S, Chiu H C. Superparamagnetic hollow hybrid nanogels as a potential guidable vehicle system of stimuli-mediated MR imaging and multiple cancer therapeutics. Langmuir, 2013, 29(21): 6434–6443

    Article  CAS  Google Scholar 

  51. Kievit F M, Zhang M. Surface engineering of iron oxide nanoparticles for targeted cancer therapy. Accounts of Chemical Research, 2011, 44(10): 853–862

    Article  CAS  Google Scholar 

  52. Nie X, Chen C. Au nanostructures: an emerging prospect in cancer theranostics. Science China Life Sciences, 2012, 55(10): 872–883

    Article  CAS  Google Scholar 

  53. Choi W I, Sahu A, Kim Y H, Tae G. Photothermal cancer therapy and imaging based on gold nanorods. Annals of Biomedical Engineering, 2012, 40(2): 534–546

    Article  Google Scholar 

  54. Thakare V S, Das M, Jain A K, Patil S, Jain S. Carbon nanotubes in cancer theragnosis. Nanomedicine, 2010, 5(8): 1277–1301

    Article  CAS  Google Scholar 

  55. Feng L, Wu L, Qu X. New horizons for diagnostics and therapeutic applications of graphene and graphene oxide. Advanced Materials, 2013, 25(2): 168–186

    Article  CAS  Google Scholar 

  56. Sahu A, Choi W I, Lee J H, Tae G. Graphene oxide mediated delivery of methylene blue for combined photodynamic and photothermal therapy. Biomaterials, 2013, 34(26): 6239–6248

    Article  CAS  Google Scholar 

  57. Ke H, Wang J, Tong S, Jin Y, Wang S, Qu E, Bao G, Dai Z. Gold nanoshelled liquid perfluorocarbon magnetic nanocapsules: a nanotheranostic platform for bimodal ultrasound/magnetic resonance imaging guided photothermal tumor ablation. Theranostics, 2014, 4(1): 12–23

    Article  CAS  Google Scholar 

  58. Chen W, Ayala-Orozco C, Biswal N C, Perez-Torres C, Bartels M, Bardhan R, Stinnet G, Liu X D, Ji B, Deorukhkar A, Brown L V, Guha S, Pautler R G, Krishnan S, Halas N J, Joshi A. Targeting pancreatic cancer with magneto-fluorescent theranostic gold nanoshells. Nanomedicine, Posted online on September 24, 2013, Pages:1–14

    Google Scholar 

  59. Wang X, Liu H, Chen D, Meng X, Liu T, Fu C, Hao N, Zhang Y, Wu X, Ren J, Tang F. Multifunctional Fe3O4@P(St/MAA) @chitosan@Au core/shell nanoparticles for dual imaging and photothermal therapy. ACS Applied Materials & Interfaces, 2013, 5(11): 4966–4971

    Article  CAS  Google Scholar 

  60. Melancon M P, Lu W, Zhong M, Zhou M, Liang G, Elliott A M, Hazle J D, Myers J N, Li C, Stafford R J. Targeted multifunctional gold-based nanoshells for magnetic resonance-guided laser ablation of head and neck cancer. Biomaterials, 2011, 32(30): 7600–7608

    Article  CAS  Google Scholar 

  61. Fan Z, Shelton M, Singh A K, Senapati D, Khan S A, Ray P C. Multifunctional plasmonic shell-magnetic core nanoparticles for targeted diagnostics, isolation, and photothermal destruction of tumor cells. ACS Nano, 2012, 6(2): 1065–1073

    Article  CAS  Google Scholar 

  62. Cheng L, Yang K, Li Y, Chen J, Wang C, Shao M, Lee S T, Liu Z. Facile preparation of multifunctional upconversion nanoprobes for multimodal imaging and dual-targeted photothermal therapy. Angewandte Chemie International Edition in English, 2011, 50(32): 7385–7390

    Article  CAS  Google Scholar 

  63. Hu Y, Meng L, Niu L, Lu Q. Facile synthesis of superparamagnetic Fe3O4@polyphosphazene@Au shells for magnetic resonance imaging and photothermal therapy. ACS Applied Materials & Interfaces, 2013, 5(11): 4586–4591

    Article  CAS  Google Scholar 

  64. Ohulchanskyy T Y, Kopwitthaya A, Jeon M, Guo M, Law W C, Furlani E P, Kim C, Prasad P N. Phospholipid micelle-based magneto-plasmonic nanoformulation for magnetic field-directed, imaging-guided photo-induced cancer therapy. Nanomedicine-UK, 2013, 9(8): 1192–1202

    Article  CAS  Google Scholar 

  65. Wang C, Irudayaraj J. Multifunctional magnetic-optical nanoparticle probes for simultaneous detection, separation, and thermal ablation of multiple pathogens. Small, 2010, 6(2): 283–289

    Article  CAS  Google Scholar 

  66. Kirui D K, Khalidov I, Wang Y, Batt C A. Targeted near-IR hybrid magnetic nanoparticles for in vivo cancer therapy and imaging. Nanomedicine-UK, 2013, 9(5): 702–711

    Article  CAS  Google Scholar 

  67. Kirui D K, Rey D A, Batt C A. Gold hybrid nanoparticles for targeted phototherapy and cancer imaging. Nanotechnology, 2010, 21(10): 105105

    Article  Google Scholar 

  68. Shi X, Gong H, Li Y, Wang C, Cheng L, Liu Z. Graphene-based magnetic plasmonic nanocomposite for dual bioimaging and photothermal therapy. Biomaterials, 2013, 34(20): 4786–4793

    Article  CAS  Google Scholar 

  69. Yang K, Hu L, Ma X, Ye S, Cheng L, Shi X, Li C, Li Y, Liu Z. Multimodal imaging guided photothermal therapy using functionalized graphene nanosheets anchored with magnetic nanoparticles. Advanced Materials, 2012, 24(14): 1868–1872

    Article  CAS  Google Scholar 

  70. Ma Y, Tong S, Bao G, Gao C, Dai Z. Indocyanine green loaded SPIO nanoparticles with phospholipid-PEG coating for dual-modal imaging and photothermal therapy. Biomaterials, 2013, 34(31): 7706–7714

    Article  CAS  Google Scholar 

  71. Wang C, Xu H, Liang C, Liu Y, Li Z, Yang G, Cheng L, Li Y, Liu Z. Iron oxide @ polypyrrole nanoparticles as a multifunctional drug carrier for remotely controlled cancer therapy with synergistic antitumor effect. ACS Nano, 2013, 7(8): 6782–6795

    Article  CAS  Google Scholar 

  72. Shen S, Kong F, Guo X, Wu L, Shen H, Xie M, Wang X, Jin Y, Ge Y. CMCTS stabilized Fe3O4 particles with extremely low toxicity as highly efficient near-infrared photothermal agents for in vivo tumor ablation. Nanoscale, 2013, 5(17): 8056–8066

    Article  CAS  Google Scholar 

  73. Chu M, Shao Y, Peng J, Dai X, Li H, Wu Q, Shi D. Near-infrared laser light mediated cancer therapy by photothermal effect of Fe3O4 magnetic nanoparticles. Biomaterials, 2013, 34(16): 4078–4088

    Article  CAS  Google Scholar 

  74. Levy M, Luciani N, Alloyeau D, Elgrabli D, Deveaux V, Pechoux C, Chat S, Wang G, Vats N, Gendron F, Factor C, Lotersztajn S, Luciani A, Wilhelm C, Gazeau F. Long term in vivo biotransformation of iron oxide nanoparticles. Biomaterials, 2011, 32(16): 3988–3999

    Article  CAS  Google Scholar 

  75. Gu L, Fang R H, Sailor M J, Park J H. In vivo clearance and toxicity of monodisperse iron oxide nanocrystals. ACS Nano, 2012, 6(6): 4947–4954

    Article  CAS  Google Scholar 

  76. Tassa C, Shaw S Y, Weissleder R. Dextran-coated iron oxide nanoparticles: a versatile platform for targeted molecular imaging, molecular diagnostics, and therapy. Accounts of Chemical Research, 2011, 44(10): 842–852

    Article  CAS  Google Scholar 

  77. Yoon H J, Lim T G, Kim J H, Cho YM, Kim Y S, Chung U S, Kim J H, Choi B W, Koh W G, Jang W D. Fabrication of multifunctional layer-by-layer nanocapsules toward the design of theragnostic nanoplatform. Biomacromolecules, 2014, 15(4): 1382–1389

    Article  CAS  Google Scholar 

  78. Shi J, Yu X, Wang L, Liu Y, Gao J, Zhang J, Ma R, Liu R, Zhang Z. PEGylated fullerene/iron oxide nanocomposites for photodynamic therapy, targeted drug delivery and MR imaging. Biomaterials, 2013, 34(37): 9666–9677

    Article  CAS  Google Scholar 

  79. Huang G, Chen H, Dong Y, Luo X, Yu H, Moore Z, Bey E A, Boothman D A, Gao J. Superparamagnetic iron oxide nanoparticles: amplifying ROS stress to improve anticancer drug efficacy. Theranostics, 2013, 3(2): 116–126

    Article  CAS  Google Scholar 

  80. Taratula O, Garbuzenko O, Savla R, Wang Y A, He H, Minko T. Multifunctional nanomedicine platform for cancer specific delivery of siRNA by superparamagnetic iron oxide nanoparticles-dendrimer complexes. Current Drug Delivery, 2011, 8(1): 59–69

    Article  CAS  Google Scholar 

  81. Tang C, Russell P J, Martiniello-Wilks R, Rasko J E, Khatri A. Concise review: Nanoparticles and cellular carriers-allies in cancer imaging and cellular gene therapy? Stem Cells (Dayton, Ohio), 2010, 28(9): 1686–1702

    Article  CAS  Google Scholar 

  82. Medarova Z, Pham W, Farrar C, Petkova V, Moore A. In vivo imaging of siRNA delivery and silencing in tumors. Nature Medicine, 2007, 13(3): 372–377

    Article  CAS  Google Scholar 

  83. Chen J, Zhu S, Tong L, Li J, Chen F, Han Y, Zhao M, Xiong W. Superparamagnetic iron oxide nanoparticles mediated (131)IhVEGF siRNA inhibits hepatocellular carcinoma tumor growth in nude mice. BMC Cancer, 2014, 14(1): 114

    Article  Google Scholar 

  84. Turcheniuk K, Tarasevych A V, Kukhar V P, Boukherroub R, Szunerits S. Recent advances in surface chemistry strategies for the fabrication of functional iron oxide based magnetic nanoparticles. Nanoscale, 2013, 5(22): 10729–10752

    Article  CAS  Google Scholar 

  85. Hu S H, Hsieh T Y, Chiang C S, Chen P J, Chen Y Y, Chiu T L, Chen S Y. Surfactant-free, lipo-polymersomes stabilized by iron oxide nanoparticles/polymer interlayer for synergistically targeted and magnetically guided gene delivery. Advanced Healthcare Materials, 2014, 3(2): 273–282

    Article  CAS  Google Scholar 

  86. Jiang S, Eltoukhy A A, Love K T, Langer R, Anderson D G. Lipidoid-coated iron oxide nanoparticles for efficient DNA and siRNA delivery. Nano Letters, 2013, 13(3): 1059–1064

    Article  CAS  Google Scholar 

  87. Yathindranath V, Sun Z, Worden M, Donald L J, Thliveris J A, Miller D W, Hegmann T. One-pot synthesis of iron oxide nanoparticles with functional silane shells: a versatile general precursor for conjugations and biomedical applications. Langmuir, 2013, 29(34): 10850–10858

    Article  CAS  Google Scholar 

  88. Wang C, Ravi S, Martinez G V, Chinnasamy V, Raulji P, Howell M, Davis Y, Mallela J, Seehra M S, Mohapatra S. Dual-purpose magnetic micelles for MRI and gene delivery. Journal of Controlled Release, 2012, 163(1): 82–92

    Article  CAS  Google Scholar 

  89. He H, David A, Chertok B, Cole A, Lee K, Zhang J, Wang J, Huang Y, Yang V C. Magnetic nanoparticles for tumor imaging and therapy: a so-called theranostic system. Pharmaceutical Research, 2013, 30(10): 2445–2458

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Duxin Sun.

Additional information

Dr. Duxin Sun is a professor in the Department of Pharmaceutical Sciences, University of Michigan. He has joint appointment in the Chemical Biology program, and the Interdisciplinary Medicinal Chemistry program. He serves as the director of Pharmacokinetics (PK) Core and is a member of University of Michigan’s Comprehensive Cancer Center. Also, he has served as chair of the PPB (Physical Pharmacy and Biopharmaceutics) section in AAPS (American Association of Pharmaceutical Scientists); vice president of the American Chinese Pharmaceutical Association (ACPA). Dr. Sun has served on study sections for many grant agencies, such as the NIH, FDA, Cancer Research UK, French National Research Agency, and Italian Ministry of Health.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ren, X., Chen, H., Yang, V. et al. Iron oxide nanoparticle-based theranostics for cancer imaging and therapy. Front. Chem. Sci. Eng. 8, 253–264 (2014). https://doi.org/10.1007/s11705-014-1425-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11705-014-1425-y

Keywords

Navigation