Skip to main content
Log in

H2 production by ethanol decomposition with a gliding arc discharge plasma reactor

  • Research Article
  • Published:
Frontiers of Chemical Science and Engineering Aims and scope Submit manuscript

Abstract

A gliding arc discharge (GRD) reactor was used to decompose ethanol into primarily H2 and CO with small amounts of CH4, C2H2, C2H4, and C2H6. The ethanol concentration, electrode gap, input voltage and Ar flow rate all affected the conversion of ethanol with results ranging from 40.7% to 58.0%. Interestingly, for all experimental conditions the SH2/SCO selectivity ratio was quite stable at around 1.03. The mechanism for the decomposition of ethanol is also described.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Joensen F, Jens R, Nielsen R. Conversion of hydrocarbons and alcohols for fuel cells. Journal of Power Sources, 2002, 105(2): 195–201

    Article  CAS  Google Scholar 

  2. Navarro R, Peña M, Fierro J. Hydrogen production reactions from carbon feedstocks: fossil fuels and biomass. Chemical Reviews, 2007, 107(10): 3952–3991

    Article  CAS  Google Scholar 

  3. Haryanto A, Fernando S, Murali N, Adhikari S. Current status of hydrogen production techniques by steam reforming of ethanol: a review. Energy & Fuels, 2005, 19(5): 2098–2106

    Article  CAS  Google Scholar 

  4. Goltsov V, Veziroglu T, Goltsova L. Hydrogen civilization of the future—A new conception of the IAHE. International Journal of Hydrogen Energy, 2006, 31(2): 153–159

    Article  CAS  Google Scholar 

  5. Meng N, Michael L, Sumathy K, Dennis L. Potential of renewable hydrogen production for energy supply in HongKong. International Journal of Hydrogen Energy, 2006, 31(10): 1401–1412

    Article  Google Scholar 

  6. Meng N, Dennis L, Michael L, Sumathy K. An overview of hydrogen production from biomass. Fuel Processing Technology, 2006, 87(5): 461–472

    Article  Google Scholar 

  7. Meng N, Dennis L, Michael L. A review on reforming bio-ethanol for hydrogen production. International Journal of Hydrogen Energy, 2007, 32(15): 3238–3247

    Article  Google Scholar 

  8. Li J, Kazakov A, Dryer F. Experimental and numerical studies of ethanol decomposition reactions. Journal of Physical Chemistry A, 2004, 108(38): 7671–7680

    Article  CAS  Google Scholar 

  9. Diagne C, Idriss H, Kiennemann A. Hydrogen production by ethanol reforming over Rh/CeO2-ZrO2 catalysts. Catalysis Communications, 2002, 3(12): 565–571

    Article  CAS  Google Scholar 

  10. Toshiya N, Tomoaki M, Hiroyoshi K, Kazunori U, Yasuyuki M, Shen W, Seiichiro I. Catalytic steam reforming of ethanol to produce hydrogen and acetone. Applied Catalysis A, General, 2005, 279(1–2): 273–277

    Google Scholar 

  11. Fishtik I, Alexander A, Datta R, Geana D. A thermodynamic analysis of hydrogen production by steam reforming of ethanol via response reactions. International Journal of Hydrogen Energy, 2000, 25(1): 31–45

    Article  CAS  Google Scholar 

  12. Fierro V, Klouz V, Akdim O, Mirodatos C. Oxidative reforming of biomass derived ethanol for hydrogen production in fuel cell applications. Catalysis Today, 2002, 75(1–4): 141–144

    Article  CAS  Google Scholar 

  13. Cavallaro S, Chiodo V, Vita A, Freni S. Hydrogen production by auto-thermal reforming of ethanol on Rh/Al2O3 catalyst. Journal of Power Sources, 2003, 123(1): 10–16

    Article  CAS  Google Scholar 

  14. Matsumura Y, Nakamori T. Steam reforming of methane over nickel catalysts at low reaction temperature. Applied Catalysis A, General, 2004, 258(1): 107–114

    Article  CAS  Google Scholar 

  15. Petitpasa G, Rollier J, Darmon A, Gonzalez-Aguilar J, Metkemeijer R, Fulcheri L. A comparative study of non-thermal plasma assisted reforming technologies. International Journal of Hydrogen Energy, 2007, 32(14): 2848–2867

    Article  Google Scholar 

  16. Aubry O, Met C, Khacef A, Cormier J. On the use of a non-thermal plasma reactor for ethanol steam reforming. Chemical Engineering Journal, 2005, 106(3): 241–247

    Article  CAS  Google Scholar 

  17. Zheng B, Yan J, Li X, Chi Y, Cen K. Plasma assisted dry methane reforming using gliding arc gas discharge: effect of feed gases proportion. International Journal of Hydrogen Energy, 2008, 33(20): 5545–5553

    Article  Google Scholar 

  18. Yang Y, Lee B, Chun Y. Characteristics of methane reforming using gliding arc reactor. Energy, 2009, 34(2): 172–177

    Article  CAS  Google Scholar 

  19. Rueangjitt N, Sreethawonga T, Chavadej S, Sekiguchi H. Plasmacatalytic reforming of methane in AC microsized gliding arc discharge: effects of input power, reactor thickness, and catalyst existence. Chemical Engineering Journal, 2009, 155(3): 874–880

    Article  CAS  Google Scholar 

  20. Burlica R, Shih K, Hnatiuc B, Locke B. Hydrogen generation by pulsed gliding arc discharge plasma with sprays of alcohol solutions. Industrial & Engineering Chemistry Research, 2011, 50(15): 9466–9470

    Article  CAS  Google Scholar 

  21. Yanguas-Gil A, Hueso J, Cotrino J, Caballero A, González-Elipe A. Reforming of ethanol in a microwave surface-wave plasma discharge. Applied Physics Letters, 2004, 85(18): 4004–4006

    Article  CAS  Google Scholar 

  22. Tanabe S, Matsuguma H, Okitsu K, Matsumoto H. Generation of hydrogen from methanol in a dielectric-barrier discharge-plasma system. Chemistry Letters, 2000, 29(10): 1116–1117

    Article  Google Scholar 

  23. Wang B, Lv Y, Zhang X, Hu S. Hydrogen generation from steam reforming of ethanol in dielectric barrier discharge. Journal of Natural Gas Chemistry, 2011, 20(2): 151–154

    Article  CAS  Google Scholar 

  24. Henriques J, Bundaleska N, Tatarova E, Dias F, Ferreira C. Microwave plasma torches driven by surface wave applied for hydrogen production. International Journal of Hydrogen Energy, 2011, 36(1): 345–354

    Article  CAS  Google Scholar 

  25. Petitpas G, José G, Adeline D, Laurent F. Ethanol and E85 reforming assisted by a non-thermal arc discharge. Energy & Fuels, 2011, 24(4): 2607–2613

    Article  Google Scholar 

  26. Du C, Li H, Zhang L, Wang J, Huang D, Xiao M, Cai J, Chen Y, Yan H, Xiong Y, Xiong Y. Hydrogen production by steam-oxidative reforming of bio-ethanol assisted by Laval nozzle arc discharge. International Journal of Hydrogen Energy, 2012, 37(10): 8318–8329

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Baowei Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, B., Ge, W., Lü, Y. et al. H2 production by ethanol decomposition with a gliding arc discharge plasma reactor. Front. Chem. Sci. Eng. 7, 145–153 (2013). https://doi.org/10.1007/s11705-013-1327-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11705-013-1327-4

Keywords

Navigation