Skip to main content
Log in

Investigations on dehydration processes of trisodium citrate hydrates

  • Research Article
  • Published:
Frontiers of Chemical Science and Engineering Aims and scope Submit manuscript

Abstract

The dehydration processes of trisodium citrate (Na3C6H5O7) hydrates were investigated using thermogravimetry (TG), differential scanning calorimetry (DSC) and powder X-ray diffraction (PXRD). It was found that the temperature of dehydration of trisodium citrate dihydrate was at 430.99 K. For trisodium citrate pentahydrate, there is a two-step dehydration process and the endothermal peaks appear at 337.23 K and 433.83 K, respectively. During the first step of dehydration process, the structure of trisodium citrate pentahydrate changed into the structure of trisodium citrate dihydrate. In addition, the kinetics of dehydration for trisoidum citrate hydrates was also investigated using TG data. According to the activation energies of dehydration calculated by Ozawa equation, it was found that the dehydration mechanisms of the two hydrates were different.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bayes B, Bonal J, Romero R. Sodium citrate for filling haemodialysis catherters. Nephrology, Dialysis, Transplantation, 1999, 14(10): 2532–2533

    Article  CAS  Google Scholar 

  2. Gao J Y, Xie C, Wang Y L, Xu Z, Hao H X. Solubility data of trisodium citrate hydrates in aqueous solution and crystal-solution interfacial energy of the pentahydrate. Crystal Research and Technology, 2012, 47(4): 397–403

    Article  CAS  Google Scholar 

  3. Steiner T, Koellner G. Crystalline p-cyclodextrin hydrate at various humidities: fast, continuous, and reversible dehydration studied by X-ray diffraction. Journal of the American Chemical Society, 1994, 116(12): 5122–5128

    Article  CAS  Google Scholar 

  4. Morris R E, Burton A, Bull L M, Zones S I. SSZ-51-A new aluminophosphate zeotype: synthesis, crystal structure, NMR, and dehydration properties. Chemistry of Materials, 2004, 16(15): 2844–2851

    Article  CAS  Google Scholar 

  5. Boonchom B J, Vittayakorn N. Dehydration behavior of synthetic Al0.5Fe0.5PO4·2.5H2O. Journal of Chemical & Engineering Data, 2010, 55(9): 3307–3311

    Article  CAS  Google Scholar 

  6. Frost R L, Kloprogge J T. Heating stage spectroscopy: infrared, Raman, energy dispersive X-ray and X-ray photoelectron spectroscopy. In: Brown M E, Gallagher P K, eds. Handbook of Thermal Analysis and Calorimetry. Oxford: Elsevier, 2008, 171–173

    Google Scholar 

  7. Sestak J. Thermodynamical Properties of Solids. Prague: Academia Publishers, 1984, 1–5

    Google Scholar 

  8. Young D. Decomposition of Solids. Oxford: Pergamon Press, 1966, 55–109

    Google Scholar 

  9. Arivanandhan M, Huang X M, Uda S, Bhagavannarayana G, Vijayan N, Sankaranarayanan K, Ramasamy P. Directional growth of organic NLO crystal by different growth methods: a comparative study by means of XRD, HRXRD and laser damage threshold. Journal of Crystal Growth, 2008, 310(21): 4587–4592

    Article  CAS  Google Scholar 

  10. Duan Y, Li J, Yang X, Hu L, Wang Z, Liu Y, Wang C. Kinetic analysis on the non-isothermal dehydration by integral master-plots method and TG-FTIR study of zinc acetate dihydrate. Journal of Analytical and Applied Pyrolysis, 2008, 83(1): 1–6

    Article  CAS  Google Scholar 

  11. Lee S B, Fasina O. Fasina O. TG-FTIR analysis of switchgrass pyrolysis. Journal of Analytical and Applied Pyrolysis, 2009, 86(1): 39–43

    Article  CAS  Google Scholar 

  12. dos Santos A V, Matos J R. Dehydration studies of rare earth p-toluenesulfonate hydrates by TG/DTG and DSC. Journal of Alloys and Compounds, 2002, 344(1–2): 195–198

    Article  Google Scholar 

  13. Yonemochi E, Hoshino T, Yoshihashi Y, Terada K. Evaluation of the physical stability and local crystallization of amorphous terfenadine using XRD-DSC and micro-TA. Thermochimica Acta, 2005, 432(1): 70–75

    Article  CAS  Google Scholar 

  14. Fischer A, Palladino G. Trisodium citrate dihydrate. Acta Crystallographica. Section E, Structure Reports Online, 2003, 59(11): m1080–m1082

    Article  Google Scholar 

  15. Voissat B, Rodier N. Crystal structure of sodium citrate hydrate. Bulletin de la Societe Chimique de France, 1986, 4: 522–525

    Google Scholar 

  16. Vyazovkin S. Isoconversional kinetics. In: Brown M E, Gallagher P K, eds. Handbook of Thermal Analysis and Calorimetry. Oxford: Elsevier, 2008, 504–506

    Google Scholar 

  17. Ozawa T. A new method of analyzing thermogravimetric data. Bulletin of the Chemical Society of Japan, 1965, 38(11): 1881–1886

    Article  CAS  Google Scholar 

  18. Gamlin C D, Dutta N K, Choudhury N R. Evaluation of knietic parameters of thermal and oxidative decomposition of base oils by conventional, isothermal and modulated TGA, and pressure DSC. Thermochim Acta, 2002, 392–393: 357–369

    Article  Google Scholar 

  19. Vyazovkin S. A unified approach to kinetic processing of nonisothermal data. International Journal of Chemical Kinetics, 1996, 28(2): 95–101

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongxun Hao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gao, J., Wang, Y. & Hao, H. Investigations on dehydration processes of trisodium citrate hydrates. Front. Chem. Sci. Eng. 6, 276–281 (2012). https://doi.org/10.1007/s11705-012-1206-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11705-012-1206-4

Keywords

Navigation