Skip to main content
Log in

Polymorphism of pharmaceutical molecules: perspectives on nucleation

  • Review Article
  • Published:
Frontiers of Chemical Engineering in China Aims and scope Submit manuscript

Abstract

Polymorphism is a widespread phenomenon observed in more than half of all drug substances. Various polymorphs frequently possess different physical, chemical, mechanical and thermal properties that can profoundly affect the bioavailability, stability and other performance characteristics of the drug. Accordingly, the elucidation of the relationship between the particular polymorph of a pharmaceutical molecule and its functional properties is crucial to select the most suitable polymorph of the pharmaceutical molecule for development into a drug product. This review briefly introduces recent advances in the discovery and control of the polymorphs of pharmaceutical molecules, in terms of the enhancement of the selective nucleation of a particular polymorph. In the light of this, some cases discussed in the following is to be considered controversial.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wu H. An analysis on the production and sale of China’s pharmaceutical industry. Chinese J Pharm, 2007, 38(4): A27–A34

    Google Scholar 

  2. Shekunov B Y, York P. Crystallization processes in pharmaceutical technology and drug delivery design. J Cryst Growth, 2000, 211: 122–136

    Article  CAS  Google Scholar 

  3. Morissette S L, Almarsson Ö, Peterson M L, Remenar J F, Read M J, Lemmo A V, Ellis S, Cima M J, Gardner C R. High-throughput crystallization: polymorphs, salts, co-crystals and solvates of pharmaceutical solids. Adv Drug Deliv Rev, 2004, 56: 275–300

    Article  CAS  Google Scholar 

  4. Datta S, Grant D J W. Crystal structures of drugs: advances in determination, prediction and engineering. Nat Rev Drug Discov, 2004, 3: 42–57

    Article  CAS  Google Scholar 

  5. Sirota N N. Certain problems of polymorphism (I). Cryst Res Technol, 1982, 17: 661–691

    Article  CAS  Google Scholar 

  6. Doherty C, York P. Frusemide crystal forms-solid-state and physicochemical analyses. Int J Pharm, 1988, 47: 141–155

    Article  CAS  Google Scholar 

  7. Lu J, Rohani S. Polymorphic crystallization and transformation of the anti-viral/HIV drug stavudine. Org Process Res Dev, 2009, 13: 1262–1268

    Article  CAS  Google Scholar 

  8. Rodríguez-Caabeiro F, Criado-Fornelio A, Jimenez-Gonzalez A, Guzman L, Igual A, Perez A, Pujol M. Experimental chemotherapy and toxicity in mice of three mebendazole polymorphic forms. Chemotherapy, 1987, 33: 266–271

    Article  Google Scholar 

  9. Swanepoel E, Liebenberg W, de Villiers MM. Quality evaluation of generic drugs by dissolution test: changing the USP dissolution medium to distinguish between active and non-active mebendazole polymorphs. Eur J Pharm Biopharm, 2003, 55: 345–349

    Article  CAS  Google Scholar 

  10. Sun C, Grant D J W. Influence of crystal structure on the tableting properties of sulfamerazine polymorphs. Pharm Res, 2001, 18: 274–280

    Article  CAS  Google Scholar 

  11. Mirmehrabi M, Rohani S. An approach to solvent screening for crystallization of polymorphic pharmaceuticals and fine chemicals. J Pharm Sci, 2005, 94: 1560–1576

    Article  CAS  Google Scholar 

  12. Aakeroy C B, Fasulo M E, Desper J. Cocrystal or salt: does it really matter? Mol Pharm, 2007, 4: 317–322

    Article  CAS  Google Scholar 

  13. Aitipamula S, Chow P S, Tan R B H. Dimorphs of a 1:1 cocrystal of ethenzamide and saccharin: solid-state grinding methods result in metastable polymorph. Cryst Eng Comm, 2009, 11: 889–895

    CAS  Google Scholar 

  14. Bernstein J, Hagler A T. Conformational polymorphism—the influence of crystal structure on molecular conformation. J Am Chem Soc, 1978, 100: 673–681

    Article  CAS  Google Scholar 

  15. Bernstein J, Davey R J, Henck J O. Concomitant polymorphs. Angew Chem Int Ed, 1999, 38: 3440–3461

    Article  Google Scholar 

  16. Datta S, Grant D J W. Effect of supersaturation on the crystallization of phenylbutazone polymorphs. Cryst Res Technol, 2005, 40: 233–242

    Article  CAS  Google Scholar 

  17. Gracin S, Rasmuson Å C. Polymorphism and crystallization of paminobenzoic acid. Cryst Growth Des, 2004, 4: 1013–1023

    Article  CAS  Google Scholar 

  18. Gu C H, Young V, Grant D J W. Polymorph screening: influence of solvents on the rate of solvent-mediated polymorphic transformation. J Pharm Sci, 2001, 90: 1878–1890

    Article  CAS  Google Scholar 

  19. Weissbuch I, Lahav M, Leiserowitz L. Toward stereochentical control, monitoring, and understanding of crystal nucleation. Cryst Growth Des, 2002, 3: 125–150

    Article  CAS  Google Scholar 

  20. Davey R J, Allen K, Blagden N, Cross W I, Lieberman H F, Quayle M J, Righini S, Seton L, Tiddy G J T. Crystal engineering—nucleation, the key step. Cryst Eng Commun, 2002, 4: 257–264

    CAS  Google Scholar 

  21. Khoshkhoo S, Anwar J. Crystallization of polymorphs—the effect of solvent. J Phys D-Appl Phys, 1993, 26: B90–B93

    Article  CAS  Google Scholar 

  22. Tao J, Jones K J, Yu L. Cross-nucleation between D-mannitol polymorphs in seeded crystallization. Cryst Growth Des, 2007, 7: 2410–2414

    Article  CAS  Google Scholar 

  23. Beckmann W, Otto W, Budde U. Crystallization of the stable polymorph of hydroxytriendione: seeding process and effects of purity. Org Process Res Dev, 2001, 5: 387–392

    Article  CAS  Google Scholar 

  24. Tanaka S, Ataka M, Kubota T, Soga T, Homma K, Lee W C, Tanokura M. The effect of amphiphilic additives on the growth and morphology of aspergillus niger acid proteinase a crystals. J Cryst Growth, 2002, 234: 247–254

    Article  CAS  Google Scholar 

  25. Rodríguez-Spong B, Price C P, Jayasankar A, Matzger A J, Rodríguez-Hornedo N. General principles of pharmaceutical solid polymorphism: a supramolecular perspective. Adv Drug Deliv Rev, 2004, 56: 241–274

    Article  CAS  Google Scholar 

  26. Lee E H, Boerrigter S X M, Rumondor A C F, Chamarthy S P, Byrn S R. Formation and solid-state characterization of a salt-induced metastable polymorph of flufenamic acid. Cryst Growth Des, 2008, 8: 91–97

    Article  CAS  Google Scholar 

  27. Yang X, Lu J, Wang X J, Ching C B. Effect of sodium chloride on the nucleation and polymorphic transformation of glycine. J Cryst Growth, 2008, 310: 604–611

    Article  CAS  Google Scholar 

  28. Lang M D, Grzesiak A L, Matzger A J. The use of polymer heteronuclei for crystalline polymorph selection. J Am Chem Soc, 2002, 124: 14834–14835

    Article  CAS  Google Scholar 

  29. Bonafede S J, Ward M D. Selective nucleation and growth of an organic polymorph by ledge-directed epitaxy on a molecular-crystal substrate. J Am Chem Soc, 1995, 117: 7853–7861

    Article  CAS  Google Scholar 

  30. Hiremath R, Varney SW, Swift J A. Selective growth of a less stable polymorph of 2-iodo-4-nitroaniline on a self-assembled monolayer template. Chem Commun, 2004, 2676–2677

  31. Dressler D H, Mastai Y. Controlling polymorphism by crystallization on self-assembled multilayers. Cryst Growth Des, 2007, 126: 847–850

    Article  CAS  Google Scholar 

  32. Ha J M, Wolf J H, Hillmyer M A, Ward M D. Polymorph selectivity under nanoscopic confinement. J Am Chem Soc, 2004, 126: 3382–3383

    Article  CAS  Google Scholar 

  33. Garetz B A, Aber J E, Goddard N L, Young R G, Myerson A S. Nonphotochemical, polarization-dependent, laser-induced nucleation in supersaturated aqueous urea solutions. Phys Rev Lett, 1996, 77: 3475–3476

    Article  CAS  Google Scholar 

  34. Zaccaro J, Matic J, Myerson A S, Garetz B A. Nonphotochemical, laser-induced nucleation of supersaturated aqueous glycine produces unexpected gamma-polymorph. Cryst Growth Des, 2001, 1: 5–8

    Article  CAS  Google Scholar 

  35. Llinàs A, Goodman J M. Polymorph control: past, present and future. Drug Discov Today, 2008, 13(5–6): 198–210

    Article  Google Scholar 

  36. Di Profio G, Tucci S, Curcio E, Drioli E. Selective glycine polymorph crystallization by using microporous membranes. Cryst Growth Des, 2007, 7: 526–530

    Article  CAS  Google Scholar 

  37. Liu Y X, Wang X J, Lu J, Ching C B. Influence of the roughness, topography and physicochemical properties of chemically modified surfaces on the heterogeneous nucleation of protein crystals. J Phys Chem B, 2007, 111(50): 13971–13978

    Article  CAS  Google Scholar 

  38. Gardner C R, Almarsson Ö, Chen H, Morissette S L, Peterson M L, Zhang Z, Wang S, Lemmo A V, Gonzales-Zugasti J, Monagle J, Marchionna J, Ellis S J, McNulty C, Johnson A, Levinson D, Cima M J. Application of high-throughput technologies to drug substance and drug product development. Comput Chem Eng, 2004, 28: 943–953

    Article  CAS  Google Scholar 

  39. Lu J, Rohani S, Polymorphism and crystallization of active pharmaceutical ingredients (APIs). Curr Med Chem, 2009, 16: 884–905

    Article  CAS  Google Scholar 

  40. Gavezzotti A. Computer simulations of organic solids and their liquid-state precursors. Faraday Discuss, 1997, 106: 63–77

    Article  CAS  Google Scholar 

  41. Gavezzotti A. Ten years of experience in polymorph prediction: what next? Cryst Eng Comm, 2002, 4: 343–347

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jie Lu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lu, J., Li, Z. & Jiang, X. Polymorphism of pharmaceutical molecules: perspectives on nucleation. Front. Chem. Eng. China 4, 37–44 (2010). https://doi.org/10.1007/s11705-009-0294-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11705-009-0294-2

Keywords

Navigation