Skip to main content
Log in

Search an unsorted database with quantum mechanics

  • Review Article
  • Published:
Frontiers of Computer Science in China Aims and scope Submit manuscript

Abstract

In this article, we review quantum search algorithms for unsorted database search problem. Unsorted database search is a very important problem in science and technology. In a quantum computer, a marked state can be found with very high probability using the Grover’s algorithm, or exactly with the Long algorithm. We review the Grover algorithm and related generalizations. In particular, we review the phase matching conditions in quantum search algorithm. Several issues that may cause confusion about the quantum search algorithm are also clarified.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Brassard G. Searching a quantum phone book. Science, 1997, 275(5300): 627–628

    Article  Google Scholar 

  2. Brassard G, Hoyer P. An exact quantum polynomial-time algorithm for Simon’s problem. In: Proceedings of 35th Annual Symposium on the Foundations of Computer Sciences. 1997, 116–123

  3. Brassard G, Hoyer P, Tapp A. Quantum counting. Lecture Notes in Computer Science, 1998, 1443: 820–831

    MathSciNet  Google Scholar 

  4. Benioff P. Space searches with a quantum robot. In: Quantum computation and information. Washington DC: AMS Series on Contemporary Mathematics, 2000, 305: 1–12. See also in e-print quant-ph/0003006

    Google Scholar 

  5. Twamley J J. A hidden shift quantum algorithm. J. Phys. A, 2000, 33: 8973–8979

    Article  MATH  MathSciNet  Google Scholar 

  6. Guo H, Long G L, Sun Y. A quantum Algorithm for Finding a Hamilton Circuit. Commun. Theor. Phys., 2001, 35(4): 385–388

    MathSciNet  MATH  Google Scholar 

  7. Guo H, Long G L, Li F, Quantum algorithms for some well-known NP problems. Commun. Theor. Phys. 2002, 37(4): 424–426

    MathSciNet  Google Scholar 

  8. Yao A C, Bentley J. An almost optimal algorithm for unbounded searching. Information Processing Letters, 1976, 5: 82–87

    Article  MATH  MathSciNet  Google Scholar 

  9. Yao A C, Yao F F. The complexity of searching an ordered random table. In: Proceedings of 17th IEEE Symposium on Foundations of Computer Science. Houston, Texas: 1976, 222–227

  10. Shor P W. Algorithms for quantum computation: discrete logarithms and factoring. In: Proceedings of the Symposium on the Foundations of computer Science. New York: IEEE Computer Society Press, 1994, 124–134

    Google Scholar 

  11. Grover L K. A fast quantum mechanical algorithm for database search. In: Proceedings of 28th Annual ACM Symposium on Theory of Computing. New York: ACM, 1996, 212–219

    Google Scholar 

  12. Grover L K. Quantum mechanics helps in searching for a needle in a haystack. Phys. Rev. Lett., 1997, 79(2): 325–328

    Article  Google Scholar 

  13. Deutsch D, Jozsa R. Rapid Solution of Problems by Quantum Computation. Proc. R. Soc. London A, 1992, 439(1907): 553–558

    MATH  MathSciNet  Google Scholar 

  14. Sun X M, Yao A C, Zhang S Y. Graph properties and circular functions: how low can quantum query complexity go? In: Proceedings of 19th IEEE Conference on Computational Complexity. Amherst, Massachusetts: 2004, 286–293

  15. Sun X M, Yao A C. On the quantum query complexity of local search in two and three dimensions. In: Proceedings of 47th Annual IEEE Symposium on Foundations of Computer Science. Berkeley, CA: 2006, 429–438

  16. Shi Y Y. Lower bounds of quantum black-box complexity and degree of approximating polynomials by influence of Boolean variables. Information Processing Letters, 2000, 75(1–2):79–83

    Article  MathSciNet  Google Scholar 

  17. Hoyer P, Neerbek J, Shi Y Y. Quantum complexities of ordered searching, sorting, and element distinctness. Algorithmica, 2002, 34(4): 429–448

    Article  MathSciNet  Google Scholar 

  18. Long G L, Zhang W L, Li Y S, et al. Arbitrary phase rotation of the marked state can not be used for Grover’s quantum search algorithm. Commun. Theor. Phys., 1999, 32(3): 335–338

    Google Scholar 

  19. Long G L, Li Y S, Zhang W L, et al. Phase matching in quantum searching. Phys. Lett. A, 1999, 262: 27–34

    Article  MATH  MathSciNet  Google Scholar 

  20. Long G L, Tu C C, Li Y S, et al. An S0(3) picture for quantum searching. Journal of Physics A, 2001, 34: 861–866. See also in e-print quant-ph/9911004

    Article  MATH  MathSciNet  Google Scholar 

  21. Long G L. Grover algorithm with zero theoretical failure rate. Phys. Rev. A, 2002, 64(2): 022307

    Google Scholar 

  22. Grover L K. Quantum computers can search rapidly by using almost any transformation. Phys. Rev. Lett., 1998, 80(19): 4330–4332

    Article  Google Scholar 

  23. Boyer M, Brassard G, Hoyer P, et al. Tight bounds on quantum searching. In: Proceedings of the Fourth Workshop on Physics and Computation. New England: Complex Systems Institute, 1996, 36–43. See also in e-print quant-ph/9605034

    Google Scholar 

  24. Brassard G, Hoyer P, Mosca M, et al. Quantum amplitude amplification and estimation. AMS Contemporary Mathematics Series, eds. S. J. Lomonaco and H. E. Brandt, AMS(Providence), 2002, 305: 53–84. See also in e-print quant-ph/0005055

  25. Long G L, Xiao L and Sun Y. Phase matching condition for quantum search with a generalized quantum database. Phys. Lett. A, 2002, 294: 143–152. See also in e-print quant-ph/0107013

    Article  MATH  MathSciNet  Google Scholar 

  26. Biron D, Biham O, Biham E, et al. Generalized Grover search algorithm for arbitrary initial amplitude distribution. Lecture Notes in Computer Science, 1999, 1509: 140–147. See also in e-print quart-ph/9801066

    Article  MathSciNet  Google Scholar 

  27. Shang B. Query complexity for searching multiple marked states from an unsorted database. Commun. Theor. Phys. 2007, 48(2): 264–266. See also in e-print quart-ph/0604059

    Google Scholar 

  28. Biron E, Biham O, Biron D, et al. Analysis of generalized Grover quantum search algorithms using recursion equations. Phys. Rev. A, 2001, 63(1): 012310

    Google Scholar 

  29. Zalka C. A Grover-based quantum search of optimal order for an unknown number of marked elements. e-print quart-ph/9902049

  30. Han Q Z, Sun H Z. Group theory. Beijing: Peking University Press, 1987

    Google Scholar 

  31. Long G L, Sun Y. Efficient scheme for initializing a quantum register with an arbitrary superposed state. Phys. Rev. A, 2001, 64(1): 014303

    Google Scholar 

  32. Hoyer P. Arbitrary phases in quantum amplitude amplification. Phys. Rev. A, 2000, 62(5): 052304

    Google Scholar 

  33. Long G L, Li Y S, Zhang W L, et al. Dominant gate imperfection in Grover’s quantum search algorithm. Phys. Rev. A, 2000, 61(4): 042305

    Google Scholar 

  34. Niwa J, Matsumoto K, Imai H. General-purpose parallel simulator for quantum computing. Phys. Rev. A, 2002, 66(6): 062317

    Google Scholar 

  35. Shenvi N, Brown K R, Whaley K B. Effects of a random noisy oracle on search algorithm complexity. Phys. Rev. A, 2003, 68(5): 052313

    Google Scholar 

  36. Li D F, Li X X, Huang H T, et al. Invariants of Grovers algorithm and the rotation in space, Phys. Rev. A, 2002, 66(4): 044304

    Google Scholar 

  37. Li D F, Li X X. More general quantum search algorithm Q = − I γ VI τ U and the precise formula for the amplitude and the non-symmetric effects of different rotating angles. Phys. Rev. A, 2001, 287:304–316

    MATH  Google Scholar 

  38. Wu X D, Long G L. Verifier-based algorithm for unsorted database search problem. Int. J. Quant. Inf. (to appear)

  39. Chi D P, Kim J. Quantum database search with certainty by a single query. Chaos Solitons Fractals, 1999, 10: 1689–1693. See also in e-print quant-ph/9708005

    Article  MATH  MathSciNet  Google Scholar 

  40. Long G L. General quantum interference principle and duality computer. Commun. Theor. Phys., 2006, 45(5): 825–844

    Article  MathSciNet  Google Scholar 

  41. Gudder S. Mathematical theory of duality quantum computers. Quantum Information Processing, 2007, 6(1): 49–54

    Article  MathSciNet  Google Scholar 

  42. Long G L. Mathematical theory of duality computer in the density matrix formalism. Quantum Information Processing, 2007, 6(1): 37–48

    Article  MathSciNet  Google Scholar 

  43. Deutsch D. Quantum computational networks. Proc. R. Soc. Lond. A, 1989, 425: 73–90

    MATH  MathSciNet  Google Scholar 

  44. Barenco A, Bennett C H, Cleve R, et al. Elementary gates for quantum computation. Phys. Rev. A, 1996, 52(5): 3457–3467

    Article  Google Scholar 

  45. Gudder S. Duality quantum computers and quantum operations. University of Denver, 2006, M06/11

  46. Grover L K. Fixed-point quantum search. Phys. Rev. Lett., 2005, 95(15): 150501

    Article  Google Scholar 

  47. Li D F, Li X R, Huang H T, et al. Fixed-point quantum search for different phase shifts. Phys. Lett. A 2007, 362(4): 260–264

    Article  MathSciNet  Google Scholar 

  48. Long G L and Liu Y. Duality mode and recycling computing in a quantum computer. to be submitted

  49. Wang W Y, Shang B, Wang C, et al. Prime factorization in the duality computer. Commun. Theor.Phys., 2007, 47(3): 471–473

    Google Scholar 

  50. Bennett C H, Bernstein E, Brassard G, et al. Strengths and weaknesses of quantum computing. SIAM J. Comput., 1997, 26(5): 1510–1523

    Article  MATH  MathSciNet  Google Scholar 

  51. Guo H, Long G L, Sun Y. Effects of imperfect gate operations in Shor’s prime factorization algorithm. J. Chin. Chem. Soc., 2001, 48(4): 449–454

    MathSciNet  Google Scholar 

  52. Wei L F, Li Xiao, Hu X D, et al. Effects of dynamical phases in Shor’s factoring algorithm with operational delays. Phys. Rev. A, 2005, 71(3): 022317

  53. Zhirov O V, Shepelyansky D L. Dissipative decoherence in the Grover algorithm. Eur. Phys. J. D, 2006, 38(2): 405–408

    Article  Google Scholar 

  54. Ai Q, Li Y S, Long G L. Influence of gate operation errors in the quantum counting algorithm. J. Comput. Sci. and Technol., 2006(6), 21: 927–932

    Article  MathSciNet  Google Scholar 

  55. Bruschweiler R. Novel strategy for database searching in spin Liouville space by NMR ensemble computing. Phys. Rev. Lett., 2000, 85(22): 4815–4818

    Article  Google Scholar 

  56. Xiao L, Long G L. Fetching marked items from an unsorted database using NMR ensemble computing. Phys. Rev. A, 2002, 66(5): 052320

    Google Scholar 

  57. Long G L, Xiao L. Parallel quantum computing in a single ensemble quantum computer. Phys. Rev. A, 2004, 69(6): 052303

    Google Scholar 

  58. Long G L, Xiao L. Experimental realization of a fetching algorithm in a 7-qubit NMR Liouville space computer. J. Chem. Phys., 2003, 119(16): 8473–8481

    Article  Google Scholar 

  59. Grover L K. Quantum computers can search arbitrarily large databases by a single query. Phys. Rev. Lett., 1997, 79(23): 4709–4712

    Article  Google Scholar 

  60. Gingrich R M, Williams C P and Cerf N J. Generalized quantum search with parallelism. Phys. Rev. A, 2000, 61(5): 052313

    Google Scholar 

  61. Collins D. Modified Grover’s algorithm for an expectation-value quantum computer. Phys. Rev. A, 2002, 65(5): 052321

    Google Scholar 

  62. Protopopescu V, D’Helon C, Barhen J, Constant-time solution to the global optimization problem using Bruschweiler’s ensemble search algorithm. Journal of Physics A-Mathematical and General 2003, 36(24): L399–L407

    Article  MATH  MathSciNet  Google Scholar 

  63. Hsueh C C, Chen C Y, Constant-time solution to database searching by NMR ensemble computing. Fortschritte der Physik-Progress of Physics 2006, 54(7): 519–524

    Article  MATH  MathSciNet  Google Scholar 

  64. SaiToh A, Kitagawa M, Matrix-product-state simulation of an extended Bruschweiler bulk-ensemble database search. Phys. Rev. A 2006, 73(6): 062332

    Google Scholar 

  65. Mehring M, Muller K, Averbukh I S, et al. NMR experiment factors numbers with Gauss sums. Phys. Rev. Lett. 2007, 98(12): 120502

    Google Scholar 

  66. Pang C Y, Zhou Z W, Guo G C. A hybrid quantum encoding algorithm of vector quantization for image compression. Chinese Physics, 2006, 15(12): 3039–3043

    Article  Google Scholar 

  67. Chen C Y, Hsueh C C. Quantum factorization algorithm by NMR ensemble computers. Applied Mathematics and Computation, 2006, 174(2): 1363–1369

    Article  MATH  MathSciNet  Google Scholar 

  68. Jones J A, Mosca M, Hansen R H. Implementation of a quantum search algorithm on a quantum computer. Nature, 1998, 393(6683): 344–346

    Article  Google Scholar 

  69. Chuang I L, Gershenfeld N, Kubinec M. Experimental implementation of fast quantum searching. Phys. Rev. Lett., 1998, 80(15): 3408–3411

    Article  Google Scholar 

  70. Vandersypen L M K, Steffen M, Sherwood M H, et al. Implementation of a three-quantum-bit search algorithm. Appl. Phys. Lett., 2000, 76(5): 646–648

    Article  Google Scholar 

  71. Zhang J F, Lu Z H, Deng Z W, et al. NMR analogue of the generalized Grovers algorithm of multiple marked states and its application. Chinese Physics, 2003, 12(7): 700–707

    Article  Google Scholar 

  72. Zhang J F, Lu Z H, Shan L, et al. Synthesizing NMR analogs of Einstein-Podolsky-Rosen states using the generalized Grover’s algorithm. Phys. Rev. A, 2002, 66(4): 044308

  73. Kwiat P G, Mitchell J R, Schwindt P D D, et al. Grover’s search algorithm: an optical approach. J. Mod. Optics, 2000, 47(2–3): 257–266

    MathSciNet  Google Scholar 

  74. Long G L, Yan H Y, Li Y S, et al. Experimental NMR realization of a generalized quantum search algorithm. Phys. Lett. A, 2001, 286(2–3): 121–126

    Article  MATH  MathSciNet  Google Scholar 

  75. Bhattacharya N, van den Heuvell HBV, Spreeuw RJC. Implementation of quantum search algorithm using classical Fourier optics. Phys. Rev. Lett., 2002, 88(13): 137901

    Google Scholar 

  76. Xiao L, Long G L, Yan H Y, et al. Experimental realization of the Bruschweiler’s algorithm in a homonuclear system. J. Chem. Phys., 2002, 117(7): 3310–3315

    Article  Google Scholar 

  77. Yang X D, Wei D X, Luo J, et al. Modification and realization of Bruschweiler’s search. Phys. Rev. A, 2002, 66(4): 042305

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Long Guilu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Long, G., Liu, Y. Search an unsorted database with quantum mechanics. Front. Comput. Sc. China 1, 247–271 (2007). https://doi.org/10.1007/s11704-007-0026-z

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11704-007-0026-z

Keywords

Navigation