Skip to main content
Log in

Advances in the research on the AsA-GSH cycle in horticultural crops

  • Review
  • Published:
Frontiers of Agriculture in China

Abstract

The adaptation of plants to stressed environments depends greatly upon the metabolic level of antioxidant systems within their bodies. Among the enzymatic antioxidant systems, the AsA-GSH cycle occupies a vital place and has become a hot research field in recent years. The AsA-GSH cycle can directly scavenge H2O2 produced in plants on one hand, and the antioxidants AsA and GSH produced in the cycle can also scavenge other species of active oxygen by means of additional pathways on the other hand. Environmental conditions and exogenous formulations can alter the oxidative and reductive status in plants and mediate the metabolic level of the AsA-GSH cycle within a certain range, thus regulating the resistance of plants to stresses. The present paper reviews the advances in research on the AsA-GSH cycle with respect to horticultural crops, so as to provide some beneficial reference for further studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abdel-Kader D Z, Saleh A A H (2002). Role of the ascorbate-glutathione cycle during senescence and programmed cell death in Phaseolus cotyledons. Egyptian Journal of Biology, 4: 7–13

    Google Scholar 

  • Alscher R G, DonahueJ L, Cramer C L (1997). Reactive oxygen species and antioxidants: Relationship in green cells. Physiologia Plantarum, 100: 224–233

    Article  CAS  Google Scholar 

  • Alscher R G, Ertuk N, Heath L S (2002). Role of superoxide dismutases (SODs) in controlling oxidative stress. Journal of Experimental Botany, 53: 1331–1341

    Article  CAS  PubMed  Google Scholar 

  • Asada K (1994). Mechanisms for scavenging reactive molecules generated in chloroplasts under light stress. In: Barber N R, Bowyer J R, eds. Photoinhibition of Photosynthesis. Oxford: Biological Scientific Publishers, 129–142

    Google Scholar 

  • Bowler C, Fluhr R (2000). The role of calcium and activated oxygen species as signals for controlling cross-tolerance. Trends Plant Science, 5: 241–246

    Article  CAS  Google Scholar 

  • Chaitanya K V, Sundar D, Masilamani S, Reddy A R (2002). Variation in heat stress-induced antioxidant enzyme activities among three mulberry cultivars. Plant Growth Regulation, 36(2): 175–180

    Article  CAS  Google Scholar 

  • Chen K M, Gong X J, Wang S M (2004). Glutathione metabolism and environmental stresses in plants. Acta Botanica Boreali-Occidentalia Sinica, 24(6): 1119–1130 (in Chinese)

    CAS  Google Scholar 

  • Gicek N, Gakirlar H (2008). Changes in some antioxidant enzyme activities in response to long-term salinity at two different temperatures. General and Applied Plant Physiology, 34(3–4): 267–280

    Google Scholar 

  • Dalton D A, Post C J, Langeberg L (1991). Effects of ambient oxygen and of fixed nitrogen on concentrations of glutathione, ascorbate, and associated enzymes in soybean root nodules. Plant Physiology, 96(3): 812–818

    Article  CAS  PubMed  Google Scholar 

  • Dash S, Mohanty S (2002). Response of seedlings to heat-stress in cultivars of wheat: growth temperature-dependent differential modulation of photosystem 1 and 2 activity, and foliar antioxidant defense capacity. Journal of Plant Physiology, 159(1): 49–59

    Article  CAS  Google Scholar 

  • Dat J, Vandenabeele S, Vranova E, Van Montagu M, van Breusegem F (2000). Dual action of the active oxygen species during plant stress responses. Cellular and Molecular Life Sciences, 57: 779–795

    Article  CAS  PubMed  Google Scholar 

  • Davey M W, Van M M, Inze D, Sanmartin M, Kanellis A, Smirnoff N, Benzie I J J, Strain J J, Favell D, Fletcher J (2000). Plant L-ascorbic acid: chemistry, function, metabolism, bioavailability and effects of processing. Journal of the Science of Food and Agriculture, 80: 825–860

    Article  CAS  Google Scholar 

  • de Paula M, Perez-Otaola M, Darder M, Torres M, Frutos G, Martimez-Honduvilla J (1996). Function of the ascorbate-glutathione cycle in aged sunflower seeds. Physiologia Plantarum, 96(4): 543–744

    Article  Google Scholar 

  • Ding H D, Zhu W M, Yang S J, Yang X F (2005). Dynamic changes in antioxidant systems in roots of tomato (Lycopersicom esculentum Mill.) seedling under zinc stress and recovery. Chinese Journal of Applied & Environmental Biology, 11(5): 531–535 (in Chinese)

    CAS  Google Scholar 

  • Fan H F, Guo S R, Duan J J, Du C X, Sun J (2008). Effects of nitric oxide on the growth and glutathione dependent antioxidant system in cucumber (Cucumis sativus L.) seedlings under NaCl stress. Acta Ecologica Sinica, 28(6): 2511–2517 (in Chinese)

    CAS  Google Scholar 

  • Fridovich I (1998). Oxygen toxicity: A radical explanation. Journal of Experimental Botany, 201: 1203–1209

    CAS  Google Scholar 

  • Geehev T, Willekens H, Montagn M (2003). Different responses of tobacco antioxidant enzymes to light and chilling stress. Journal of Plant Physiology, 160(5): 509–515

    Article  Google Scholar 

  • Huang R H, Liu J H, Lu Y M, Xia R X (2008). Effect of salicylic acid on the antioxidant system in the pulp of ‘Cara cara’ navel orange (Citrus sinensis L. Osbeck) at different storage temperatures. Postharvest Biology and Technology, 47: 168–175

    Article  CAS  Google Scholar 

  • Hung S H, Yu C W, Lin C H (2005). Hydrogen peroxide functions as a stress signal in plants. Botanical Bulletin of Academia Sinica, 46: 1–10

    CAS  Google Scholar 

  • Ishikawa T, Shigeoka S (2008). Recent advances in ascorbate biosynthesis and the physiological significance of ascorbate peroxidase in photosynthesizing organisms. Bioscience, Biotechnology and Biochemistry, 72(5): 1143–1154

    Article  CAS  Google Scholar 

  • Jiao H J, Wang S Y (2000). Correlation of antioxidant capacities to oxygen radical scavenging enzyme activities in blackberry. Journal of Agricultural and Food Chemistry, 48(11): 5672–5676

    Article  CAS  PubMed  Google Scholar 

  • Jiménez A, Hernandez J A, Pastori G (1998). Role of the ascorbateglutathione cycle of mitochondria and peroxisomes in the senescence of pea leaves. Plant Physiology, 118: 1327–1335

    Article  PubMed  Google Scholar 

  • Jin J S, Li Y H, San N W, Gao J P (2006). Ascorbate acid increases tolerance to water deficit stress in flowers of cut roses (Rosa hybrida L.) caused by enhanced ascorbate peroxidase activity. Acta Horticulturae Sinica, 2: 333–337 (in Chinese)

    Google Scholar 

  • Jin Y H, Tao D L, Hao Z Q, Ye J, Du Y J, Liu H L, Zhou Y B (2003). Environmental stresses and redox status of ascorbate. Acta Botanica Sinica, 45(7): 795–801

    CAS  Google Scholar 

  • Jones A M (2001). Programmed cell death in development and defense. Plant Physiology, 125: 94–97

    Article  CAS  PubMed  Google Scholar 

  • Ke S S, Yang M W (2007). Effects of water stress on antioxidant system and lipid peroxidation in leaves of Rhododendron fortunei. Acta Horticulturae Sinica, 34(5): 1217–1222 (in Chinese)

    CAS  Google Scholar 

  • Kenichi O (2005). Glutathione-associated regulation of plant growth and stress responses. Antioxid Redox Signal, 7: 973–981

    Article  Google Scholar 

  • Larkindale J, Huang B (2004). Thermotolerance and antioxidant systems in Agrostis stolonifera: involvement of salicylic acid, abscisic acid, calcium, hydrogen peroxide, and ethylene. Journal of Plant Physiology, 161(4): 405–413

    Article  CAS  PubMed  Google Scholar 

  • Larrigaudiere C, Pinto E, Lentheric I (2003). Oxidative behavior of Conference pears stored in air and controlled-atmosphere storage. Acta Horticultrae, 600: 355–360

    CAS  Google Scholar 

  • Li C Y, Ma F W, Bai T H, Shu H R, Han M Y, Wang K (2008). Membrane-lipid peroxidation and anti-oxidative mechanism in roots of apple stocks under hypoxia stress. Chinese Journal of Applied & Environmental Biology, 14(4): 460–465 (in Chinese)

    CAS  Google Scholar 

  • Li M J, Ma F W, Ma C H, Zhang L S, Han M Y, Shu H R (2006). Changes on ascorbate metabolism during senescence of detached apple leaves. Journal of Northwest Agriculture & Forestry University, 34(12): 65–68 (in Chinese)

    CAS  Google Scholar 

  • Liu H Y, Zhu Z J, Lv G H, Qian Q Q (2003). Study on relationship between physiological changes and chilling tolerance in grafted watermelon seedlings under low temperature stress. Scientia Agricultura Sinica, 36(11): 1325–1329 (in Chinese)

    Google Scholar 

  • Liu H Y, Zhu Z Z, Lv G H, Qian Q Q (2004). Effect of low temperature stress on cold tolerance and AOS scavenging of grafted watermelon seedlings. Applied Ecology Journal, 15(4): 659–662 (in Chinese)

    CAS  Google Scholar 

  • Lu P, Sang W G, Ma K P (2008). Differential responses of the activities of antioxidant enzymes to thermal stresses between two invasive Eupatorium species in China. Journal of Integrative Plant Biology, 50(4): 393–401 (in Chinese)

    Article  CAS  PubMed  Google Scholar 

  • Luo J P, Gu Y H, Wang S B, Liu J (1999). Effect of AsA on membrane damage and relevant enzymes activity in protoplast isolation and culture of Astragalus adsurgens. Acta Phytophysiologica Sinica, 25 (4): 343–349 (in Chinese)

    CAS  Google Scholar 

  • Luo L, Lin S Z, Zheng H Q, Lei Y, Zhang Q, Zhang Z Y (2007). The role of antioxidant system in freezing acclimation-induced freezing resistance of Populus suaveolens cuttings. Forestry Studies in China, 9(2): 107–113

    Article  CAS  Google Scholar 

  • Ma C H, Ma F W, Li M J, Han M Y, Shu H R (2006). Effects of exogenous ascorbic acid on senescence of detached apple leaves. Acta Horticulturae Sinica, 33(6): 1179–1184 (in Chinese)

    CAS  Google Scholar 

  • Ma F W, Chang L L (2003). The sun-exposed peel of apple fruit has higher xanthophyll cycle-dependent thermal dissipation and antioxidants of the ascorbate-glutathione pathway than the shaded peel. Plant Science, 165: 819–827

    Article  CAS  Google Scholar 

  • Ma F W, Cheng L L (2004). Exposure of the shaded side of apple fruit to full sun leads to up-regulation of both the xanthophyll cycle and the ascorbate-glutathione cycle. Plant Science, 166: 1479–1486

    Article  CAS  Google Scholar 

  • Ma Y H, Ma F W, Zhang J K, Li M J, Wang Y H, Liang D (2008). Effects of high temperature on activities and gene expression of enzymes involved in ascorbate-glutathione cycle in apple leaves. Plant Science, 175(6): 761–766

    Article  CAS  Google Scholar 

  • May M J, Vernoux T, Leaver C, Van Montagu M, Inze D (1998). Glutathione homeostasis in plants: implications for environmental sensing and plant development. Journal of Experimental Botany, 49:649–667

    Article  CAS  Google Scholar 

  • Nie Z J, Hu C X, Sun X C, Tan Q L, Liu H E (2007). Effects of molybdenum on ascorbate-glutathione cycle metabolism in Chinese cabbage (Brassica campestris L. subsp. pekinensis). Plant and Soil, 295(1–2): 13–21

    Article  CAS  Google Scholar 

  • Noctor G, Foyer C H (1998). Ascorbate and glutathione: keeping active oxygen under control. Annual Review of Plant Physiology and Plant Molecular Biology, 49: 249–279

    Article  CAS  PubMed  Google Scholar 

  • Pallanca J, Smirnoff N (2000). The control of ascorbic acid synthesis and turnover in pea seedling. Journal of Experimental Botany, 51(345): 669–674

    Article  CAS  PubMed  Google Scholar 

  • Panchuk I I, Volkov R A, Schoffl F (2002). Heat stress- and heat shock transcription factor-dependent expression and activity of ascorbate peroxidase in Arabidopsis. Plant Physiology, 129(2): 838–853

    Article  CAS  PubMed  Google Scholar 

  • Pang C H, Zhang S J, Gong Z Z, Wang B S (2005). NaCl treatment markedly enhances H2O2-scavenging system in leaves of halophyte Suaeda salsa. Physiologia Plantarum, 125(4): 490–499

    CAS  Google Scholar 

  • Pastori G M, Foyer C H (2002). Common components, networks, and pathways of cross-tolerance to stress. The central role of “redox” and abscisic acid-mediated controls. Plant Physiology, 129(2): 460–468

    Article  CAS  PubMed  Google Scholar 

  • Scandalios J G (2002). The rise of ROS. Trends Biochemistry Science, 27: 483–486

    Article  CAS  Google Scholar 

  • Selote D S, Khanna C R (2006). Drought acclimation confers oxidative stress tolerance by inducing coordinated antioxidant defense at cellular and subcellular level in leaves of wheat seedlings. Physiologia Plantarum, 127: 494–506

    Article  CAS  Google Scholar 

  • Smirnoff N (1995). Antioxidant systems and plant response to the environment. In: Smirnoff N, ed. Environment and Plant Metabolism: Flexibility and Acclimation. Oxford: Bios Scientific Publishers, 217–243

    Google Scholar 

  • Song X S, Wang Y J, Mao W H, Shi K, Zhou Y H, Nogues S, Yu J Q (2008). Effects of cucumber mosaic virus infection on electron transport and antioxidant system in chloroplasts and mitochondria of cucumber and tomato leaves. Physiologia Plantarum, 135(3): 246–257

    Article  CAS  Google Scholar 

  • Song X S, Tiao C L, Shi K, Mao W H, Ogweno J O, Zhou Y H, Yu J Q (2006). The response of antioxidant enzymes in cellular organelles in cucumber (Cucumis sativus L.) leaves to methyl viologen-induced photo-oxidative stress. Plant Growth Regulation, 49(1): 85–93

    Article  CAS  Google Scholar 

  • Su WA (2000). Adaptation of plants to temperature stress. In: Yu S W, Tang Z C, eds. Plant Physiology and Molecular Biology. Beijing: Science Press, 731–732 (in Chinese)

    Google Scholar 

  • Sun GW, Zhu Z J, Fang X Z (2004). Effects of different cadmium levels on active oxygen metabolism and H2O2-scavenging system in Brassica campestris L. ssp. chinensis. Scientia Agricultura Sinica, 37(12): 2012–2015 (in Chinese)

    Google Scholar 

  • Sun W H, Wang W Q, Meng Q W (2005). Functional mechanism and enzymatic and molecular characteristic of ascorbate peroxidase in plants. Plant Physiology Communications, 41(2): 143–147 (in Chinese)

    CAS  Google Scholar 

  • Tao D L, Oquist G, Wingsle G (1998). Active oxygen scavengers during cold acclimation of Scots pine seedlings in relation to freezing tolerance. Cryobillogy, 37: 38–45

    Article  CAS  Google Scholar 

  • Wang J P, Li Y L, Zhang J G (2008). Effect of high-temperature and excessive-light stress on APX activity in apple peel. Acta Agriculturae Boreali-Sinica, 23(6): 144–147 (in Chinese)

    Google Scholar 

  • Wang J, Li D Q (2002). Effects of water stress on AsA-GSH cycle and H2O2 content in maize root. Chinese Journal of Eco-Agriculture, 10(2): 94–96 (in Chinese)

    Google Scholar 

  • Wang L J, Li S H, Li J Y, Yang S H, Liu Y F, Shi Y L (2004). Peroxidation of membrane lipid and calcium distribution in grape mesophyll cells during cross adaptation to temperature stresses. Chinese Journal of Plant Ecology, 28(3): 326–332 (in Chinese)

    Google Scholar 

  • Wang Y, Li L T (2009). Regulation of high voltage electric field on metabolism of active oxygen species in tomato fruits during storage. Transactions of the Chinese Society of Agricultural Engineering, 25(1): 255–259 (in Chinese)

    CAS  Google Scholar 

  • Wang Z H, Jin J S, Gao J P (2006). Effect of GSH pretreatment on the tolerance to water deficit stress in cut rose ’samantha’ and related to enhancement of GR activity. Acta Horticulturae Sinica, 33(1): 89–94 (in Chinese)

    Google Scholar 

  • Xiong F S, Song P,Wang P T, Gao Y X (1992). Response of glutathioneascorbate cycle in rice leaves to photoinhabition. Chinese Journal of Rice Science, 6(4): 177–183 (in Chinese)

    Google Scholar 

  • Xu Q, Huang B (2004). Antioxidant metabolism associated with summer leaf senescence and turf quality decline for creeping bentgrass. Crop Science, 44(2): 553–560

    Article  CAS  Google Scholar 

  • Xu X W, Cao B H, Chen G J, Chen Q H, Lei J J (2008). Effects of high temperature and air humidity stress on antioxidant system and antioxidant activity differences of hot pepper varieties. Acta Agriculturae Boreali-Sinica, 23(1): 81–86 (in Chinese)

    Google Scholar 

  • Zeng B, Wang F J, Zhu C, Sun Z X (2008). Effect of AsA-GSH cycle on Hg2+-tolerance in rice mutant. Acta Agronomica Sinica, 34(5): 823–830 (in Chinese)

    CAS  Google Scholar 

  • Zhang H T, An W S, Zeng F L (1999). Effects of vitamin C on peroxidization of chloroplast membrane lipid from cucumber. Acta Botanica Boreali-Occidentalia Sinica, 19(2): 321–324 (in Chinese)

    CAS  Google Scholar 

  • Zhang J G, Chen S C, Li Y L, Di B, Zhang J Q, Liu Y F (2008). Effect of high temperature and excessive light on glutathione content in apple peel. Frontiers of Agriculture in China, 2(1): 97–102

    Article  CAS  Google Scholar 

  • Zhang J Q, Zhang J G, Fu A L, Lv M X, Zhao Y Z (2005). Effect of exogenous antioxidants on the enzymatic activities in fruit peel tissues under high-temperature stress. Acta Agriculturae Boreali-Sinica, 20(2): 41–44 (in Chinese)

    Google Scholar 

  • Zhang Y, Lou Y, Hao J, Chen Q, Tang H R (2008). Chilling acclimation induced changes in the distribution of H2O2 and antioxidant system of strawberry leaves. Agricultural Journal, 3(4): 286–291 (in Chinese)

    Google Scholar 

  • Zhao J, Shi G X, Xu Q S, Wang X, Xu B J, Hu J C (2006). Alleviatory effect of exogenous glutathione (GSH) on Hydrocharis dubia toxicated by Zn2+. Journal of Tropical and Subtropical Botany, 14(3): 213–217 (in Chinese)

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianguang Zhang.

About this article

Cite this article

Li, Y., Liu, Y. & Zhang, J. Advances in the research on the AsA-GSH cycle in horticultural crops. Front. Agric. China 4, 84–90 (2010). https://doi.org/10.1007/s11703-009-0089-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11703-009-0089-8

Keywords

Navigation