Skip to main content
Log in

Germplasm and breeding research of tea plant based on DNA marker approaches

  • Review
  • Published:
Frontiers of Agriculture in China

Abstract

Tea is the most popular non-alcoholic and healthy beverage worldwide. Tea production contributes greatly to the economy and the job opportunities for many countries in Asia and Africa. Meanwhile, the germplasm of tea, with a huge potential for the future of the whole tea industry, is presently one of the most valuable and fundamental materials for tea breeding and tea biotechnology. DNA molecular markers have been proven to be robust and valuable approaches in the studies of genetic diversity and variation, molecular identification, molecular phylogenetics, genetic stability and integrity of tea germplasm, and the genetic linkage map for breeding of tea. In this paper, a brief prospect on the molecular marker studies of tea has been summarized. The purpose is to provide an effective way for undertaking amassive tea germplasmappraisal and evaluation, to develop new applicable and cheap DNA markers, to establish a high density genetic linkage map and analyze the agronomically important QTLs, and finally, to facilitate the marker assisted early selection and shorten breeding procedures in tea.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Balasaravanan T, Pius P K, Raj Kumar R, Muraleedharan N, Shasany A K (2003). Genetic diversity among south Indian tea germplasm (Camellia sinensis, C. assamica and C. assamica spp. lasiocalyx) using AFLP markers. Plant Science, 165: 365–372

    Article  CAS  Google Scholar 

  • Borthakur S, Mondal T K, Parveen S S, Guha A, Sen P, Borthakur A, Deka P C (1998). Isolation of chloroplast DNA from tea, Camellia sp. India Journal of Experimental Biology, 36: 1165–1167

    CAS  Google Scholar 

  • Chang H T, Bartholomew B (1984). Camellias. Portland, Oregon: Timber Press

    Google Scholar 

  • Chen L, Gao Q K, Chen D M, Xu C J (2005). The use of RAPD markers for detecting genetic diversity, relationship and molecular identification of Chinese elite tea genetic resources (Camellia sinensis (L.) O. Kuntze) preserved in a tea germplasm repository. Biodiversity and Conservation, 14(6): 1433–1444

    Article  Google Scholar 

  • Chen L, Yamaguchi S (2002). Genetic diversity and phylogeny of tea plant (Camellia sinensis) and its related species and varieties in the section Thea genus Camellia determined by randomly amplified polymorphic DNA analysis. Journal of Horticultural Science & Biotechnology, 77(6): 729–732

    CAS  Google Scholar 

  • Chen L, Yamaguchi S (2005). RAPD markers for discriminating tea germplasms at the inter-specific level in China. Plant Breeding, 124: 404–409

    Article  CAS  Google Scholar 

  • Chen L, Yang Y J, Yu F L, Gao Q K, Chen D M (1998). Genetic diversity of 15 tea (Camellia sinensis (L.) O. Kuntze) cultivars using RAPD markers. Journal of Tea Science, 18(1): 21–27 (in Chinese)

    Google Scholar 

  • Chen L, Yu F L, Tong Q Q (2000). Discussions on phylogenetic classification and evolution of section Thea. Journal of Tea Science, 20(2): 89–94 (in Chinese)

    Google Scholar 

  • Chen L, Yu F L, Yang Y J, Chen D M, Xu C J, Gao Q K (1999). A study on genetic stability of excellent tea germplasms (Camellia sinensis (L.) O. Kuntze) using RAPD markers. Journal of Tea Science, 19(1): 13–16 (in Chinese)

    CAS  Google Scholar 

  • Devarumath RM, Nandy S, Rani V, Marimuthu S, Muraleedharan N, Raina S N (2002). RAPD, ISSR and RFLP fingerprints as useful markers to evaluate genetic integrity of micropropagated plants of three diploid and triploid elite tea clones representing Camellia sinensis (China type) and C. assamica ssp. assamica (Assam-India type). Plant Cell Reporters, 21: 166–173

    Article  CAS  Google Scholar 

  • Du Q Z, Li M J, Liu W H, Wang H S (1990). Chemical and numerical taxonomies of plants Thea section plants. Journal of Tea Science, 10(2): 1–12 (in Chinese)

    Google Scholar 

  • Duan H X, Shao W F, Wang P S, Xu M, Pang R H, Zhang Y P, Cui W R (2004). Study on the genetic diversity of peculiar tea germplasm resource in Yunnan by RAPD. Journal of Yunnan Agricultural University, 19(3): 246–254 (in Chinese)

    CAS  Google Scholar 

  • Feng W S, Wang G Q (2007). Chinese tea output and selling quantities reached high peaks in 2006. China Tea, 29(2): 4–5

    Google Scholar 

  • Freeman S, West J, James C, Lea V, Mayes S (2004). Isolation and characterization of highly polymorphic microsatellites in tea (Camellia sinensis). Molecular Ecology Notes, 4(3): 324–326

    Article  CAS  Google Scholar 

  • Hackett C A, Wachira F N, Paul S, Powell W, Waugh R (2000). Construction of a genetic linkage map for Camellia sinensis (tea). Heredity, 85(4): 346–355

    Article  PubMed  CAS  Google Scholar 

  • Hamrick J L (1990). Isozymes and the analysis of genetic structure in plant populations. In: Soltis E D, Soltis P S, eds. Isozymes in Plant Biology. London: Chapman and Hall, 87–105

    Google Scholar 

  • Hasimoto M (2001). The original of the tea plant. In: Proceedings of 2001 International Conference on O-Cha (tea) Culture and Science (Session II) October 5–8, Shizuoka, Japan, J5–J7

  • Hasimoto M, Takasi S (1978). Morphological studies on the origin of the tea plant. V. A proposal of one place of origin by cluster analysis. Japanese Journal of Tropical Agriculture, 21: 93–101

    Google Scholar 

  • Hou Y J, He Q, Li P W, Liang G L, Peng P, Deng M (2007) Genetic diversity of tea camellias germplasm by ISSR molecular marker. Southwest China Journal of Agricultural Sciences, 20(3): 462–465 (in Chinese)

    Google Scholar 

  • Hou Y J, He Q, Liang G L, Li P W, Peng P, Deng M (2006). ISSR analysis of the hybrid of the descendants of tea camellias. Journal of Southwest Agricultural University (Natural Science), 28(2): 267–270 (in Chinese)

    Google Scholar 

  • Huang F P, Liang Y R, Lu J L, Chen R B (2006a). Genetic mapping of first generation of backcross in tea by RAPD and ISSR markers. Journal of Tea Science, 26(3): 171–176 (in Chinese)

    Google Scholar 

  • Huang F P, Liang Y R, Lu J L, Chen R B, Mamati G (2004). Evaluation of genetic diversity in Oolong tea germplasms by AFLP fingerprinting. Journal of Tea Science, 24 (3): 183–189 (in Chinese)

    CAS  Google Scholar 

  • Huang JA, Li J X, Huang YH, Luo JW, Gong ZH, Liu ZH (2005). Construction of AFLP molecular markers linkage map in tea plant. Journal of Tea Science, 25(1): 7–15 (in Chinese)

    CAS  Google Scholar 

  • Huang J A, Li J X, Huang Y H, Luo J W, Gong Z H, Liu Z H (2006b). Genetic diversity of tea (Camellia sinensis (L.) O. Kuntze) cultivars revealed by AFLP analysis. Acta Horticulturae Sinica, 33 (2): 317–322 (in Chinese)

    CAS  Google Scholar 

  • Jin J Q, Cui H R, Chen W Y, Lu M Z, Yao Y L, Xin Y, Gong X C (2006). Data mining for SSRs in ESTs and development of ESTSSR marker in tea plant (Camellia sinensis). Journal of Tea Science, 26(1): 17–23 (in Chinese)

    CAS  Google Scholar 

  • Katoh Y, Katoh M, Takeda Y, Omori M (2003). Genetic diversity within cultivated teas based on nucleotide sequence comparison of ribosomal RNA maturase in chloroplast DNA. Euphytica, 134: 287–295

    Article  CAS  Google Scholar 

  • Kaundun S S, Matsumoto S (2002). Heterologous nuclear and chloroplast microsatellite amplification and variation in tea, Camellia sinensis. Genome, 45: 1041–1048

    Article  PubMed  CAS  Google Scholar 

  • Kaundun S S, Matsumoto S (2003a). Development of CAPS markers based on three key genes of the phenylpropanoid pathway in tea, Camellia sinensis (L.) O. Kuntze, and differentiation between assamica and sinensis varieties. Theoretical and Applied Genetics, 106: 375–383

    PubMed  CAS  Google Scholar 

  • Kaundun S S, Matsumoto S (2003b). Identification of processed Japanese green tea based on polymorphisms generated by STS-RFLP analysis. Journal of Agriculture and Food Chemistry, 51: 1765–1770

    Article  CAS  Google Scholar 

  • Kaundun S S, Matsumoto S (2004). PCR-based amplicon length polymorphisms (ALPs) at microsatellite loci and indels from non-coding DNA regions of cloned genes as a means of authenticating commercial Japanese green teas. Journal of the Science of Food and Agriculture, 84: 895–902

    Article  CAS  Google Scholar 

  • Kaundun S S, Park Y G (2002). Genetic structure of six Korean tea populations as revealed by RAPD-PCR markers. Crop Science, 42: 594–601

    CAS  Google Scholar 

  • Kaundun S S, Zhyvoloup A, Park Y G (2000). Evaluation of the genetic diversity among elite tea (Camellia sinensis var. sinensis) accessions using RAPD markers. Euphytica, 115: 7–16

    Article  CAS  Google Scholar 

  • Kim H, Liang Y R, Lu J L (2001). Comparative study on genomic DNA diversity between Korean and Chinese tea cultivars by RAPD technique. Journal of Tea Science, 21(2): 103–107 (in Chinese)

    CAS  Google Scholar 

  • Lai J A, Yang W C, Hsiao J Y (2001). An assessment genetic relationships in cultivated tea clones and native wild tea in Taiwan using RAPD and ISSR markers. Botanical Bulletin of Academia Sinica, 42: 93–100

    CAS  Google Scholar 

  • Lee E K, Luo Y P, Tong Q Q (2001). Study on the comparative morphology of pollen between Chinese Mt, Tiantai and Korean Mt, Jiri tea plants. In:Proceedings of 2001 International Conference on O-Cha (tea) Culture and Science (Session II). October 5-8, Shizuoka, Japan, 33–36

  • Lee S H, Choi H S, Kim R H, Lee H Y, Nou I S (1995). Identification of Korean wild tea plants and Japanese green tea germplasms using RAPD markers. Journal of the Korean Tea Society, 1(1): 129–148

    Google Scholar 

  • Lee S H, Nou I S (1999). Characteristics of chloroplast DNA restriction fragments in Camellia sinensis. Journal of the Korean Tea Society, 5(1): 33–44

    Google Scholar 

  • Li X H, Shi Z P, Liu C L, Luo J W, Shen C W, Gong Z H (2001). Parentage identification of filial generation tea plants from “Yunnan Daye” and “Rucheng Baimao” with RAPD method. Journal of Tea Science, 21(2): 99–102 (in Chinese)

    CAS  Google Scholar 

  • Liang G L, Zhou C Q, Lin MJ, Chen J Y, Liu J S (1994). Karyotype variation and evolution of sect Thea in Guizhou. Acta Phytotaxonomica Sinica, 32: 308–315 (in Chinese)

    Google Scholar 

  • Liang Y R, Tanaka J, Takeda Y (2000). Study on diversity of tea germplasm by RAPD marker. Journal of Zhejiang Forestry College, 17(2): 215–218 (in Chinese)

    Google Scholar 

  • Lu C Y, Liu W H, Li M J (1992). Relationship between the evolutionary relatives and the variation of esterase isozymes in tea plant. Journal of Tea Science, 12(1): 15–20 (in Chinese)

    Google Scholar 

  • Luo JW, Shi Z P, Shen CW, Liu C L, Gong ZH, Huang YH (2002). Studies on genetic relationships of tea cultivars (Camellia sinensis (L.) O. Kuntze) by RAPD analysis. Journal of Tea Science, 22(2): 140–146 (in Chinese)

    CAS  Google Scholar 

  • Matsumoto S (2001). Analysis of the differentiation of Japanese green tea cultivars using DNA markers. In:Proceedings of 2001 International Conference on O-Cha (tea) Culture and Science (Session II). October 5–8, Shizuoka, Japan, J13–J16

  • Matsumoto S (2006). Studies on the differentiation of Japanese tea cultivars (Camellia sinensis var. sinensis) according to the genetic diversity of phenylalanine ammonia-lyase. Bulletin of National Institute of Vegetable and Tea Science, 5: 63–111

    CAS  Google Scholar 

  • Matsumoto S, Kiriiwa Y, Takeda Y (2002). Differentiation of Japanese green tea cultivars as revealed by RFLP analysis of phenylalanine ammonia-lyase DNA. Theoretical and Applied Genetics, 104: 998–1002

    Article  PubMed  CAS  Google Scholar 

  • Matsumoto S, Kiriiwa Y, Yamaguchi S (2004). The Korean tea plant (Camellia sinensis): RFLP analysis of genetic diversity and relationship of Japanese tea. Breeding Science, 54: 231–237

    Article  CAS  Google Scholar 

  • Ming T L (1992). A revision of Camellia Sect. Thea. Acta Botanica Yunnanica, 14(2): 115–132 (in Chinese)

    Google Scholar 

  • Mishra R K, Sen-Mandi S (2004). Genetic diversity estimates for Darjeeling tea clones based on amplified fragment length polymorphism markers. Journal of Tea Science, 24(2): 86–92

    Google Scholar 

  • Mondal T K (2002). Assessment of genetic diversity of tea (Camellia sinensis (L.) O. Kuntze) by inter-simple sequence repeat polymerase chain reaction. Euphytica, 128: 307–315

    Article  Google Scholar 

  • Mondal T K, Bhattacharya A, Laxmikumaran M, Ahuja P S (2004). Recent advances of tea (Camellia sinensis) biotechnology. Plant Cell, Tissue and Organ Culture, 76: 195–254

    Article  CAS  Google Scholar 

  • Mondal T K, Chand P K (2002). Detection of genetic variation among micropropagated tea (Camellia sinensis (L). O. Kuntze) by RAPD analysis. In Vitro Cellular & Developmental Biology-Plant, 38: 296–299

    Article  CAS  Google Scholar 

  • Park Y G, Kaundun S S, Zhyvoloup A (2002). Use of the bulked genomic DNA-based RAPD methodology to assess the genetic diversity among abandoned Korean tea plantations. Genetic Resource and Crop Evolution, 49(2): 159–165

    Article  Google Scholar 

  • Paul S, Wachira F N, Powell W, Waugh R (1997). Diversity and genetic differentiation among populations of Indian and Kenyan tea (Camellia sinensis (L.) O. Kuntze) revealed by AFLP markers. Theoretical and Applied Genetics, 94: 255–263

    Article  CAS  Google Scholar 

  • Shao WF, Pang R H, Wang P S, Xu M, Duan H X, Zhang Y P, Li J H (2003). RAPD analysis of tea trees in Yunnan. Scientia Agricultura Sinica, 36(12): 1582–1587 (in Chinese)

    CAS  Google Scholar 

  • Singh D, Ahuja P S (2006). 5S rDNA gene diversity in tea (Camellia sinensis (L.) O. Kuntze) and its use for variety identification. Genome, 49: 91–96

    Article  PubMed  CAS  Google Scholar 

  • Singh M, Bandana, Ahuja P S (1999). Isolation and PCR amplification of genomic DNA from market samples of dry tea. Plant Molecular Biology Report, 17: 171–178

    Article  CAS  Google Scholar 

  • Singh M, Saroop J, Dhiman B (2004). Detection of intra-clonal genetic variability in vegetatively propagated tea using RAPD markers. Biologia Plantarum, 48: 113–115

    Article  CAS  Google Scholar 

  • Takeda Y (1990). Cross compatibility of tea (Camellia sinensis) and its allied species in the genus Camellia. Japan Agricultural Research Quarterly, 24: 111–116

    Google Scholar 

  • Takeo T, You X Q, Wang H F, Kinukasa H, Li M J, Cheng Q K, Wang H S (1992). One speculation on the origin and dispersion of tea plant in China-One speculation based on the chemotaxonomy by using the content-ration of terpen-alcohols found in the tea aroma composition. Journal of Tea Science, 12(2): 81–86

    Google Scholar 

  • Tanaka J (1996). RAPD linkage map of tea plant and the possibility of application in tea genetics and breeding. Tea Research Journal, 84(Suppl): 44–45

    Google Scholar 

  • Tanaka J (2000). Construction of linkage and QTL analysis of tea plant. In: Liang Y R, Liu Z S, Park Y G, Takeda Y, Tanaka J, Lu J L, Zhao D (eds). Proceedings of the International Symposium on Molecular Biology and Tea Breeding. November 20-28, 2000. Hangzhou, China, 23–26

  • Tanaka J (2006). Study on the utilization of DNA markers in tea breeding. Bulletin of National Institute of Vegetable and Tea Science, 5: 113–155

    CAS  Google Scholar 

  • Tanaka J, Metoku S, Takeda Y (2003). Garden-variety camellia ‘Robiraki’ derived from crossing between Camellia japonica as seed parent and C. sinensis as pollen parent. Application of RAPD and SSR marker analysis to tea breeding by interspecific hybridization. Breeding Research, 5: 149–154

    Article  Google Scholar 

  • Tanaka J, Taniguchi F, Hirai N, Yamaguchi S (2006). Estimation of the genome size of tea (Camellia sinensis), camellia (C. japonica), and their interspecific hybrids by flow cytometry. Tea Research Journal, 101: 1–7

    Google Scholar 

  • Tanaka J, Yamaguchi N, Nakamura Y (2001). Pollen parent of tea cultivar Sayamakaori with insect and cold resistance may not exist. Breeding Research, 3: 43–48

    Google Scholar 

  • Tanaka J, Yamaguchi S (1996). Use of RAPD markers for the identification of parentage of tea cultivars. Bulletin of National Research Institute of Vegetable, Ornamental Plant and Tea (B), 9: 31–36

    CAS  Google Scholar 

  • Thomas J, Vijayan D, Joshi S D, Lopez S J, Kumar R R (2006). Genetic integrity of somaclonal variants in tea (Camellia sinensis (L.) O. Kuntze) as revealed by inter simple sequence repeats. Journal of Biotechnology, 123: 149–154

    Article  PubMed  CAS  Google Scholar 

  • Wachira F N, Powell W, Waugh R (1997). An assessment of genetic diversity among Camellia sinensis L. (cultivated tea) and its wild relatives based on randomly amplified polymorphic DNA and organelle-specific STS. Heredity, 78: 603–611

    CAS  Google Scholar 

  • Wachira F N, Ronno W (2004). Current research on tea in Kenya. In:Proceedings of 2004 International Conference on O-Cha (Tea) Science, Shizuoka, Japan, 59–65

  • Wachira F N, Tanaka J, Takeda Y (2001). Genetic variation and differentiation in tea (Camellia sinensis) germplasm revealed by RAPD and AFLP variation. Journal of Horticultural Science & Biotechnology, 76(5): 557–563

    CAS  Google Scholar 

  • Wachira F N, Waugh R, Hackett C A, Powell W (1995). Detection of genetic diversity in tea (Camellia sinensis) using RAPD markers. Genome, 38: 201–210

    Article  PubMed  CAS  Google Scholar 

  • Wijeratne MA (2004). Tea industry in Sri Lanka. In: Proceedings of 2004 International Conference on O-Cha (Tea) Science, Shizuoka, Japan, 51–54

  • Yamaguchi S, Matsumoto S, Tanaka J (1999). Genetic dispersal of tea plant. In: Jain N K, ed. Global Advances in Tea Science. New Delhi: Aravali Books International (P) Ltd., 413–426

    Google Scholar 

  • Yao M Z, Chen L, Liang Y R (2008). Genetic diversity among tea cultivars from China, Japan and Kenya revealed by ISSR markers and its implication for parental selection in tea breeding programs. Plant Breeding, DOI: 10.1111/j.1439-0523.2007. 01448.x.http://www.blackwell-synergy.com/doi/pdf/10.1111/j.1439-0523.2007.01448.x

  • Yao M Z, Chen L, Wang X C, Zhao L P, Yang Y J (2007). Genetic diversity and relationship of clonal tea cultivars in China revealed by ISSR markers. Acta Agronomica Sinica, 33(4): 598–604 (in Chinese)

    CAS  Google Scholar 

  • Yao M Z, Huang H T, Yu J Z, Chen L (2005). Analysis on applicability of ISSR in molecular identification and relationship investigation of tea cultivars. Journal of Tea Science, 25(2): 153–157 (in Chinese)

    CAS  Google Scholar 

  • Yu F L (1986). Discussion on the originating place and the originating center of tea plants. Journal of Tea Science, 6(1): 1–8 (in Chinese)

    Google Scholar 

  • Zhao L P, Liu Z, Chen L, Yao M Z, Wang X C (2008). Generation and characterization of 24 novel EST derived microsatellites from tea plant (Camellia sinensis) and cross-species amplification in its closely related species and varieties. Conservation Genetics, DOI: 10.1007/s10592-007-9476-y.http://www.springerlink.com/content/a744khgr45x68718/fulltext.pdf

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liang Chen.

Additional information

These authors contributed equally to this work.

About this article

Cite this article

Ni, S., Yao, M., Chen, L. et al. Germplasm and breeding research of tea plant based on DNA marker approaches. Front. Agric. China 2, 200–207 (2008). https://doi.org/10.1007/s11703-008-0043-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11703-008-0043-1

Keywords

Navigation