Skip to main content
Log in

Computational design of magnetically active trinuclear heterometallic complexes on the basis of 1,3,5-triazapentadiene ligands

  • Original Paper
  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

A series of trinuclear mixed-ligand complexes of iron(II) 2,6-di(pyrazol-1-yl)pyridine moieties with linkers on the basis of 1,3,5-triazapentadiene transition metal (M = Co, Ni, Cu, Zn) bischelates has computationally been designed using the density functional theory TPSSh/6-311++G(d,p) calculations. The systems possessing complete (M = Co, Ni) and partial (M = Cu, Zn) two-step spin-crossover phenomenon at ferrous ions have been revealed. Two spin-state switching mechanisms determining by spin-crossover at iron centers and configurational isomerism at cobalt ion may simultaneously occur in solution of corresponding heterometallic compound (M = Co). The nature of the exchange interactions between paramagnetic metal centers is controlled by variation of a metal in bischelate linker (M = Co, Ni, Cu, Zn). Energy and magnetic characteristics of electromeric forms of the complexes with nickel and copper central metal ions (M = Co, Ni) allow to consider them as promising candidates for the design of molecular switches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Bally T (2010) Isomerism: the same but different. Nat Chem 2:165–166. doi:10.1038/nchem.564

    Article  CAS  Google Scholar 

  • Bannwarth A, Schmidt SO, Peters G, Sonnichsen FD, Thimm W, Herges R, Tuczek F (2012) FeIII Spin-Crossover Complexes with Photoisomerizable Ligands: experimental and Theoretical Studies on the Ligand-Driven Light-Induced Spin Change Effect. Eur J Inorg Chem 2012(16):2776–2783. doi:10.1002/ejic.201101227

    Article  CAS  Google Scholar 

  • Bokach NA, Kuznetsova TV, Simanova SA, Haukka M, Pombeiro AJL, Kukushkin VYu (2005) Nitrile–amidine coupling at Pt(IV) and Pt(II) centers. An easy entry to imidoylamidine complexes. Inorg Chem 44(14):5152–5160. doi:10.1021/ic050037q

  • Carbonera C, Costa JS, Money VA, Elhaïk J, Howard JAK, Halcrow MA, Létard J-F (2006) Photomagnetic properties of iron(II) spin crossover complexes of 2,6-dipyrazolylpyridine and 2,6-dipyrazolylpyrazine ligands. Dalton Trans 25:3058–3066. doi:10.1039/b601366j

    Article  Google Scholar 

  • Clérac R, Cotton FA, Dunbar KR, Lu T, Murillo CA, Wang X (2000) A new linear tricobalt compound with di(2-pyridyl)amide (dpa) ligands: two-step spin crossover of [Co3(dpa)4Cl2][BF4]. J Am Chem Soc 122(10):2272–2278. doi:10.1021/ja994051b

    Article  Google Scholar 

  • Elhaïk J, Kilner CA, Halcrow MA (2005) An iron(II) complex salt that crystallises in three crystal forms, one of which undergoes a sterically controlled incomplete spin-state transition on cooling. Cryst Eng Comm 7(23):151–157. doi:10.1039/b417718e

    Article  Google Scholar 

  • Elhaïk J, Kilner CA, Halcrow MA (2006) Structural diversity in iron(II) complexes of 2,6-di(pyrazol-1-yl)pyridine and 2,6-di(3-methylpyrazol-1-yl)pyridine. Dalton Trans 6:823–830. doi:10.1039/b510370c

    Article  Google Scholar 

  • Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA et al (2013) Gaussian 09. Revision E.01. Gaussian Inc., Wallingford

  • Glaser T, Theil H, Liratzis I, Weyhermüller T, Bill E (2006) Ferromagnetic coupling by orthogonal magnetic orbitals in a heterodinuclear CuIIVIVO complex and in a homodinuclear CuIICuII complex. Inorg Chem 45(13):4889–4891. doi:10.1021/ic0606328

    Article  CAS  Google Scholar 

  • Gushchin PV, Tyan MR, Bokach NA, Revenco MD, Haukka M, Wang M-J, Lai C-H, Chou P-T, Kukushkin VYu (2008) Novel tailoring reaction for two adjacent coordinated nitriles giving platinum 1,3,5-triazapentadiene complexes. Inorg Chem 47(24):11487–11500. doi:10.1021/ic702483w

    Article  CAS  Google Scholar 

  • Gütlich P, Goodwin HA (eds) (2004) Spin Crossover in transition metal compounds, Top. Curr. Chem, vol 233–235. Springer, Berlin

  • Halcrow MA (2005) The synthesis and coordination chemistry of 2,6-bis(pyrazolyl)pyridines and related ligands—versatile terpyridine analogues. Coord Chem Rev 249(24):2880–2908. doi:10.1016/j.ccr.2005.03.010

    Article  CAS  Google Scholar 

  • Halcrow MA (2007) The spin-states and spin-transitions of mononuclear iron(II) complexes of nitrogen-donor ligands. Polyhedron 26(14):3523–3576. doi:10.1016/j.poly.2007.03.033

    Article  CAS  Google Scholar 

  • Halcrow MA (ed) (2013) Spin-crossover materials: properties and applications. Wiley, Chichester. doi:10.1002/9781118519301

    Google Scholar 

  • Harvey JN, Aschi M, Schwarz H, Koch W (1998) The singlet and triplet states of phenyl cation. A hybrid approach for locating minimum energy crossing points between non-interacting potential energy surfaces. Theor Chem Acc 99(2):95–99. doi:10.1007/s002140050309

  • Hauser A (1991) Intersystem crossing in Fe(II) coordination compounds. Coord Chem Rev 111:275–290. doi:10.1016/0010-8545(91)84034-3

    Article  CAS  Google Scholar 

  • Heße N, Fröhlich R, Humelnicu I, Würthwein E-U (2005) 1,3,5-triazapentadienes as chelating ligands: 1,2,4-Triphenyl-1,3,5-triaza-pentadiene complexes of cobalt(II), nickel(II), palladium(II), copper(II) and zinc(II). Eur J Inorg Chem 2005(11):2189–2197. doi:10.1002/ejic.200401010

    Article  Google Scholar 

  • Holland JM, McAllister JA, Lu Z, Kilner CA, Thornton-Pett M, Halcrow MA (2001) An unusual abrupt thermal spin-state transition in [FeL2][BF4]2 [L = 2,6-di(pyrazol-1-yl)pyridine]. Chem Commun 6:577–578. doi:10.1039/B100995H

    Article  Google Scholar 

  • Holland JM, Barrett SA, Kilner CA, Halcrow MA (2002) Control of the spin state of Fe(II) 2,6-di(pyrazol-1-yl)pyridine complexes by distal ligand substitution. Inorg Chem Commun 5(5):328–332. doi:10.1016/s1387-7003(02)00398-2

    Article  CAS  Google Scholar 

  • Igashira-Kamiyama A, Kajiwara T, Konno T, Ito T (2006) Ferromagnetic coupling promoted by K3 N:K2 N bridging system. Inorg Chem 45(16):6460–6466. doi:10.1021/ic0520925

    Article  CAS  Google Scholar 

  • Kahn O (1993) Molecular magnetism. VCH, New York

    Google Scholar 

  • Kahn O (2000) Chemistry and physics of supramolecular magnetic materials. Acc Chem Res 33(10):647–657. doi:10.1021/ar9703138

    Article  CAS  Google Scholar 

  • Kopylovich MN, Pombeiro AJL (2011) Coordination chemistry of 1,3,5-triazapentadienes. Coord Chem Rev 255(1–2):339–355. doi:10.1016/j.ccr.2010.09.012

    Article  CAS  Google Scholar 

  • Kopylovich MN, Pombeiro AJL, Fischer A, Kloo L, Kukushkin VYu (2003) Facile Ni(II)/ketoxime-mediated conversion of organonitriles into imidoylamidine ligands. Synthesis of imidoylamidines and acetyl amides. Inorg Chem 42(22):7239–7248. doi:10.1021/ic0349813

  • Kopylovich MN, Tronova EA, Haukka M, Kirillov AM, Kukushkin VYu, Fraústo da Silva JJR, Pombeiro AJL (2007) Identification of hexameric water and hybrid water–chloride clusters intercalated in the crystal hosts of (imidoylamidine)nickel(II) Complexes. Eur J Inorg Chem 2007(29):4621–4627. doi:10.1002/ejic.200700462

  • Kopylovich MN, Lasri J, Guedes da Silva MFC, Pombeiro AJL (2009) Single-pot template transformations of cyanopyridines on a PdII centre: syntheses of ketoimine and 2,4-dipyridyl-1,3,5-triazapentadiene palladium(II) complexes and their catalytic activity for microwave-assisted Suzuki-Miyaura and Heck reactions. Dalton Trans 16:3074–3084. doi:10.1039/b820680e

    Article  Google Scholar 

  • Kopylovich MN, Kirillov AM, Tronova EA, Haukka M, Kukushkin VYu, Pombeiro AJL (2010) 1,3,5-triazapentadiene nickel(II) complexes derived from a ketoxime-mediated single-pot transformation of nitriles. Eur J Inorg Chem 2010(16):2425–2432. doi:10.1002/ejic.201000019

  • Miller JS, Drillon M (eds) (2001) Magnetism: molecules to materials II: molecule-based materials. Wiley-VCH, New York

    Google Scholar 

  • Money VA, Radosavljevic Evans I, Halcrow MA, Goeta AE, Howard JAK (2003) Light induced excited high spin-state trapping in [FeL2](BF4)2 (L = 2,6-di(pyrazol-1-yl)pyridine). Chem Commun 1:158–159. doi:10.1039/b210146g

    Article  Google Scholar 

  • Money VA, Elhaïk J, Halcrow MA, Howard JAK (2004) The thermal and light induced spin transition in [FeL2](BF4)2 (L = 2,6-dipyrazol-1-yl-4-hydroxymethylpyridine). Dalton Trans 10:1516–1518. doi:10.1039/b401155d

    Article  Google Scholar 

  • Nihei M, Ui M, Yokota M, Han L, Maeda A, Kishida H, Okamoto H, Oshio H (2005) Two-step spin conversion in a cyanide-bridged ferrous square. Angew Chem Int Ed 44(40):6484–6487. doi:10.1002/anie.200502216

    Article  CAS  Google Scholar 

  • Noodleman L (1981) Valence bond description of antiferromagnetic coupling in transition metal dimers. J Chem Phys 74(10):5737–5743. doi:10.1063/1.440939

    Article  CAS  Google Scholar 

  • Noro S-I, Kitagawa S, Yamashita M, Wada T (2002) New microporous coordination polymeraffording guest-coordination sites at channel walls. Chem Commun 3:222–223. doi:10.1039/B108695B

    Article  Google Scholar 

  • Sarova GH, Bokach NA, Fedorov AA, Berberan-Santos MN, Kukushkin VYu, Haukka M, Fraústo da Silva JJR, Pombeiro AJL (2006) A new family of luminescent compounds: platinum(II) imidoylamidinates exhibiting pH-dependent room temperature luminescence. Dalton Trans 31:3798–3805. doi:10.1039/B602083F

    Article  Google Scholar 

  • Shoji M, Koizumi K, Kitagawa Y, Kawakami T, Yamanaka S, Okumura M, Yamaguchi K (2006) A general algorithm for calculation of Heisenberg exchange integrals J in multispin systems. Chem Phys Lett 432(1–3):343–347. doi:10.1016/j.cplett.2006.10.023

    Article  CAS  Google Scholar 

  • Starikov AG, Starikova AA, Minkin VI (2016) Quantum-chemical study of spin crossover in cobalt complexes with an o-benzoquinone ligand. Dokl Chem 467(1):83–87. doi:10.1134/S0012500816030113

    Article  CAS  Google Scholar 

  • Starikova AA, Minkin VI (2016) Structure and magnetic properties of di-o-semiquinone complexes of alkali metals with a bischelate linker: a quantum chemical study. Mendeleev Commun 26(5):423–425. doi:10.1016/j.mencom.2016.09.020

    Article  CAS  Google Scholar 

  • Staroverov VN, Scuseria GE, Tao J, Perdew JP (2003) Comparative assessment of a new nonempirical density functional: molecules and hydrogen-bonded complexes. J Chem Phys 119(23):12129–12137. doi:10.1063/1.1626543

    Article  CAS  Google Scholar 

  • Tao JM, Perdew JP, Staroverov VN, Scuseria GE (2003) Climbing the density functional ladder: nonempirical meta-generalized gradient approximation designed for molecules and solids. Phys Rev Lett 91(14):146401. doi:10.1103/PhysRevLett.91.146401

    Article  Google Scholar 

  • Tong M-L, Wu Y-M, Tong Y-X, Chen X-M, Chang H-C, Kitagawa S (2003) Rational Design of a Ferromagnetic Trinuclear Copper(II) Complex with a Novel in situ Synthesised Metalloligand. Eur J Inorg Chem 2003(13):2385–2388. doi:10.1002/ejic.200300197

    Article  Google Scholar 

  • Zheng L-L, Zhang W-X, Qin L-J, Leng J-D, Lu J-X, Tong M-L (2007) Isolation of a pentadentate ligand and stepwise synthesis, structures, and magnetic properties of a new family of homo- and heterotrinuclear complexes. Inorg Chem 46(23):9548–9557. doi:10.1021/ic070343z

    Article  CAS  Google Scholar 

  • Zhurko GA, Zhurko DA (2013) Chemcraft 1.7. http://www.chemcraftprog.com

Download references

Acknowledgements

This work has been supported by Russian Foundation for Basic Research (Grant No. 16-33-60019 mol_a_dk).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alyona A. Starikova.

Electronic supplementary material

Below is the link to the electronic supplementary material.

11696_2017_195_MOESM1_ESM.doc

Electronic Supplementary Material associated with this article (details of the DFT calculations, including optimized geometries and energy parameters of the complexes I (Co, Ni, Cu, Zn) and III (Co, Ni, Cu, Zn)), and also the shape of natural magnetic orbital of the electromer 12 HSFeII-Cu-HSFeII can be found in the online version of this paper (DOI: 10.1007/s11696-017-0195-7). (DOC 4410 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Starikova, A.A. Computational design of magnetically active trinuclear heterometallic complexes on the basis of 1,3,5-triazapentadiene ligands. Chem. Pap. 72, 821–828 (2018). https://doi.org/10.1007/s11696-017-0195-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11696-017-0195-7

Keywords

Navigation