Skip to main content
Log in

Characterization of Anemopsis californica essential oil–β-cyclodextrin inclusion complex as antioxidant prolonged-release system

  • Original Paper
  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

Antioxidant activity is a property of Anemopsis californica essential oil (ACO). However, ACO possesses volatile compounds that provide strong flavors and that are susceptible to degradation, complicating its application. An alternative is its encapsulation in a β-cyclodextrin (β-CD) matrix. Therefore, the characterization of β-CD–ACO inclusion complexes as an antioxidant prolonged-release system was the objective of this work. The ACO yield was 8.26 mg/g of dry sample. Elemicin (EL) (68.9%) and methyleugenol (ME) (11.7%) comprised the majority compounds identified by gas chromatography (GC). The β-CD–ACO inclusion complex, with a 90:10 ratio based on the precipitation technique, exhibited best percentage of recovery, greater ACO retention, and major antioxidant capacity determined by DPPH [2,2-diphenyl-1-picrylhydrazyl] and ABTS [2,2′-azino-bis-(3 ethylbenzothiazoline-6-sulfonic acid)] assays. Antioxidant activity was maintained during encapsulation. Free β-CD and β-CD:ACO presented the hysteresis phenomenon according to water sorption isotherms. A prolonged-release system was studied using different relative humidities (0, 33, 66, 96 and 100%). EL demonstrated 93.75% of release in highest relative humidity, while ME released completely. These results suggest application of the β-CD–ACO complex in systems in which it can be passively released and in controlled form, as in active food or drug packaging.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Angelova A, Lefebvre CR, Baszikin A (1999) Drug-cyclodextrin association constants determined by surface tension and surface pressure measurements. J Colloid Interface Sci 212:280–285

    Article  CAS  Google Scholar 

  • Astray G, Gonzalea-Barreiro C, Mejuto JC, Riao-Otero R, Simal-Gándara J (2009) A review on the use of cyclodextrins in foods. Food Hydrocoll 23:1631–1640. doi:10.1016/j.foodhyd.2009.01.001

    Article  CAS  Google Scholar 

  • Ayala-Zavala JF, Soto-Valdez H, González-León A, Álvarez-Parrilla E, Martín-Belloso O, González-Aguilar GA (2008a) Microencapsulation of cinnamon leaf (Cinnamomum zeylanicum) and Garlic (Allium sativum) oils in β-cyclodextrin. J Incl Phenom Macrocycl Chem 60:359–368. doi:10.1007/s10847-007-9385-1

    Article  CAS  Google Scholar 

  • Ayala-Zavala JF, Del Toro-Sánchez L, Alvarez-Parrilla E, Soto-Valdez H, Martín-Belloso O, Ruiz-Cruz S, González-Aguilar G (2008b) Natural antimicrobial agents incorporated in active packaging to preserve the quality of fresh fruits and vegetables. Stewart Postharvest Rev 4(3):1–9. doi:10.2212/spr.2008.3.9

    Google Scholar 

  • Aytac Z, Kusku SI, Durgun E, Uyar T (2016) Encapsulation of gallic acid/cyclodextrin inclusion complex in electrospun polylactic acid nanofibers: release behavior and antioxidant activity of gallic acid. Mater Sci Eng C 63:231–239. doi:10.1016/j.msec.2016.02.063

    Article  CAS  Google Scholar 

  • Cunha-Silva L, Texeira-Dias JJC (2004) How humidity affects the solid-state inclusion of 2-phenoxyethanol in β-cyclodextrin: a comparison with β-cyclodextrin. New J Chem 28:200–206. doi:10.1039/B309491J

    Article  CAS  Google Scholar 

  • da Silva JK, Silva JR, Nascimento SB, da Luz SF, Meireles EN, Alves CN, Ramos AR, Maia JG (2014) Antifungal activity and computational study of constituents from Piper divaricatum essential oil against Fusarium infection in black pepper. Molecules 19:17926–17942. doi:10.3390/molecules191117926

    Article  Google Scholar 

  • Del-Toro-Sánchez CL, Ayala-Zavala JF, Machi L, Santacruz H, Villegas-Ochoa MA, Alvarez-Parrilla E, González-Aguilar GA (2010) Controlled release of antifungal volatiles of thyme essential oil from β-cyclodextrin capsules. J Incl Phenom Macrocycl Chem 67:431–441. doi:10.1007/s10847-009-9726-3

    Article  Google Scholar 

  • Del-Toro-Sánchez CL, Bautista-Bautista N, Blasco-Cabal JL, Gonzalez-Ávila M, Gutiérrez-Lomelí M, Arriaga-Alba M (2014) Antimutagenicity of methanolic extracts from Anemopsis californica relationed with their antioxidant activity. Evid Based Complement Altern Med 2104:Article ID 273878, 8 pp. doi:10.1155/2014/273878

  • Del-Toro-Sánchez CL, Gutiérrez-Lomelí M, Lugo-Cervantes E, Zurita F, Robles-García MA, Ruiz-Cruz S, Aguilar JA, Morales-Del-Río JA, Guerrero-Medina PJ (2015) Storage effect on phenols and on the antioxidant activity of extracts from Anemopsis californica and inhibition of elastase enzyme. J Chem 2015:Article ID 602136, 8 pp. doi:10.1155/2015/602136

  • El-Baroty GS, Abd El-Brky HH, Farag RS, Seleh MA (2010) Characterization of antioxidant and antimicrobial compounds of cinnamon and ginger essential oils. Afr J Biochem Res 4(6):167–174

    CAS  Google Scholar 

  • Franco C, Schwingel L, Lula I, Sinisterra RD, Koester LS, Bassani VL (2009) Studies on coumestrol/β-cyclodextrin association: inclusion complex characterization. Int J Pharm 369(1–2):5–11. doi:10.1016/j.ijpharm.2008.10.026

    Article  CAS  Google Scholar 

  • Hill LE, Gomes C, Taylor TM (2013) Characterization of beta-cyclodextrin inclusion complexes containing essential oils (trans-cinnamaldehyde, eugenol, cinnamon bark, and clove bud extracts) for antimicrobial delivery applications. LWT Food Sci Technol 51:86–93. doi:10.1016/j.lwt.2012.11.011

    Article  CAS  Google Scholar 

  • Hunt MA, Rusa CC, Tonelli AE, Balik MC (2004) Structure and stability of columnar cyclomaltohexaose (a-cyclodextrin) hydrate. Carbohydr Res 339:2805–2810

    Article  CAS  Google Scholar 

  • Kamal GM, Anwar F, Hussain AI, Sarri N, Ashraf MY (2011) Yield and chemical composition of Citrus essential oils as affected by drying pretreatment of peels. Int Food Res J 18(4):1275–1282

    CAS  Google Scholar 

  • Kfoury M, Auezova L, Greige-Gerges HL, Larsen K, Fourmentin S (2016) Release studies of trans-anethole from β-cyclodextrin solid inclusion complexes by multiple headspace extraction. Carbohydr Polym 151:1245–1250

    Article  CAS  Google Scholar 

  • Krishnaiah D, Sarbatly R, Nithyanandam R (2011) A review of the antioxidant potential of medicinal plant species. Food Bioprod Process 89(3):217–233. doi:10.1016/j.fbp.2010.04.008

    Article  CAS  Google Scholar 

  • Lakušić DV, Ristić MS, Slavkovska VN, Sinžar-Sekulić JB, Lakušić BS (2012) Environment-related variations of the composition of the essential oils of rosemary (Rosmarinus officinalis L.) in the Balkan Penninsula. Chem Biodivers 9(7):1286–1302. doi:10.1002/cbdv.201100427

    Article  Google Scholar 

  • Maia de Morais S, Aragao CFE Jr, Araújo de Silva AR, Martins NJS, Rondina D, Leal CJH (2006) Atividade antioxidante de óleos essenciais de espécies de Croton do nordeste do Brasil. Quim Nova 29(5):907–910. doi:10.1590/S0100-40422006000500004

    Article  CAS  Google Scholar 

  • Martin Del Valle EM (2004) Cyclodextrins and their uses: a review. Process Biochem 39(9):1033–1046. doi:10.1016/S0032-9592(03)00258-9

    Article  Google Scholar 

  • McGraw GW, Hemingway RW, Ingram LL Jr, Canady CS, McGraw WB (1999) Thermal degradation of terpenes: camphene, ∆3-carene, limonene, and α-terpinene. Environ Sci Technol 33:4029–4033. doi:10.1021/es9810641

    Article  CAS  Google Scholar 

  • Medina AL, Lucero ME, Holguin FO, Estell RE, Posakony JJ, Simon J, O’Connel MA (2005) Composition and antimicrobial activity of Anemopsis californica leaf oil. J Agric Food Chem 53(22):8694–8698. doi:10.1021/jf0511244

    Article  CAS  Google Scholar 

  • Medina-Holguin AL, Micheletto S, Holguin FO, Rodriguez J, O’Connell MA (2007) Environmental influences on essential oils in roots of Anemopsis californica. HortScience 42:1578–1583. doi:10.1093/chromsci/bms143

    CAS  Google Scholar 

  • Medina-Holguín AL, Holguín FO, Micheletto S, Goehle S, Simon JA, O’Connell MA (2009) Chemotypic variation of essential oils in the medicinal plant, Anemopsis californica. Phytochemistry 69(4):919–927. doi:10.1016/j.phytochem.2007.11.006

    Article  Google Scholar 

  • Molyneux P (2004) The use of the stable radical diphenylpicrylhydrazyl (DPPH) for estimating antioxidant activity. Songklanakarin J Sci Technol 26(2):211–219

    CAS  Google Scholar 

  • Neoh TL, Koecher K, Reineccius G, Furuta T, Yoshii H (2010) Dissociation characteristic of the inclusion complex of cyclomaltohexaose (a-cyclodextrin) with 1-methylcyclopropene in response to stepwise rising relative humidity. Carbohydr Res 345:2085–2089

    Article  CAS  Google Scholar 

  • Nguyen H, Campi EM, Jackson WR, Patti AF (2009) Effect of oxidative deterioration on flavour and aroma components of lemon oil. Food Chem 112:388–393. doi:10.1016/j.foodchem.2008.05.090

    Article  CAS  Google Scholar 

  • Prior RL, Wu X, Schaich K (2005) Standardized methods for the determination of antioxidant capacity and phenolics in foods and dietary supplements. J Agric Food Chem 53(10):4290–4302. doi:10.1021/jf0502698

    Article  CAS  Google Scholar 

  • Re R, Pellegrini N, Protoggente A, Pannala A, Yang M, Rice-Evans C (1999) Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic Biol Med 26:1231–1237. doi:10.1016/S0891-5849(98)00315-3

    Article  CAS  Google Scholar 

  • Roginsky V, Lissi EA (2005) Review of methods to determine chain-breaking antioxidant activity in food. Food Chem 92(2):235–254. doi:10.1016/j.foodchem.2004.08.004

    Article  CAS  Google Scholar 

  • Salem MZ, Ashmawy NA, Elansary HO, El-Settawy AA (2015) Chemotyping of diverse Eucalyptus species grown in Egypt and antioxidant and antibacterial activities of its respective essential oils. Nat Prod Res 29(7):681–685. doi:10.1080/14786419.2014.981539

    Article  CAS  Google Scholar 

  • Sambasevam KP, Mohamad S, Sarih NM, Ismail NA (2013) Synthesis and characterization of the inclusion complex of β-cyclodextrin and azomethine. Int J Mol Sci 14:3671–3682. doi:10.3390/ijms14023671

    Article  CAS  Google Scholar 

  • Scott RPW (2005) Essential oils. In: Worsfold P, Townshend A, Poole C (eds) Encyclopedia of analytical science, 2nd edn. Elsevier, Amsterdam, pp 554–561

    Chapter  Google Scholar 

  • Sharma OP, Bhat TK (2009) DPPH antioxidant assay revisited. Food Chem 113:1202–1205. doi:10.1016/j.foodchem.2008.08.008

    Article  CAS  Google Scholar 

  • Suihko E, Korhonen O, Järvinen T, Ketolainen J, Jarho P, Laine E, Paronen P (2001) Complexation with tolbutamide modifies the physicochemical and tableting properties of hydroxypropyl-βcyclodextrin. Int J Pharm 215:137–145

    Article  CAS  Google Scholar 

  • Szejtli J (1998) Introduction and general overview of cyclodextrin chemistry. Chem Rev 98(5):1743–1754. doi:10.1021/cr970022c

    Article  CAS  Google Scholar 

  • Szente L, Szejtli J (2004) Cyclodextrin as food ingredients. Trends Food Sci Technol 15:137–142. doi:10.1016/j.tifs.2003.09.019

    Article  CAS  Google Scholar 

  • Turek C, Stintzing FC (2013) Stability of essential oils: a review. Compr Rev Food Sci Food Saf 12:40–53. doi:10.1111/1541-4337.12006

    Article  CAS  Google Scholar 

  • VanderJagt TJ, Ghatts R, VanderJagt DJ, Crossey M, Glew RH (2002) Comparison of the total antioxidant content of 30 widely used medicinal plants of New Mexico. Life Sci 70:1035–1040. doi:10.1016/S0024-3205(01)01481-3

    Article  CAS  Google Scholar 

  • Von Gadov A, Joubert E, Hansmann CF (1997) Comparison of the antioxidant activity of aspalathin with that of other plant phenols of Rooibos tea (Aspalathus linearis), -tocopherol, BHT, and BHA. J Agric Food Chem 45(1):632–638. doi:10.1021/jf960281n

    Google Scholar 

  • Wang J, Cao Y, Sun B, Wang C (2011) Physicochemical and release characterisation of garlic oil-β-cyclodextrin inclusion complexes. Food Chem 127:1680–1685. doi:10.1016/j.foodchem.2011.02.036

    Article  CAS  Google Scholar 

  • Yokozawa T, Chen CP, Dong E, Tanaka T, Nonaka G-I, Nishioka I (1998) Study on the inhibitory effect of tannins and flavonoids against the 1,1-diphenyl-2-picrylhydrazyl radical. Biochem Pharmacol 56(2):213–222. doi:10.1016/S0006-2952(98)00128-2

    Article  CAS  Google Scholar 

  • Zhang JJ, Zhu Y, Yu JN, Xu XM (2015) Advances in novel carrier systems of chemical constituents from spice volatile oils. Zhongguo Zhong Yao Za Zhi 40(20):3932–3936

    CAS  Google Scholar 

  • Zielińska S, Matkowski A (2014) Phytochemistry and bioactivity of aromatic and medicinal plants from the genus Agastache (Lamiaceae). Phytochem Rev 13:391–416. doi:10.1007/s11101-014-9349-1

    Article  Google Scholar 

  • Zouari N, Ayadi I, Fakhfakh N, Rebai A, Zouari S (2012) Variation of chemical composition of essential oils in wild populations of Thymus algeriensis Boiss. et Reut., a North African endemic Species. Lipids Health Dis 11:28. doi:10.1186/1476-511X-11-28

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Consejo Estatal de Ciencia y Tecnología (CONACYT) for the scholarship proportioned to Liliana Maribel Perez Perez for this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carmen Lizette Del-Toro-Sánchez.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Perez-Perez, L.M., Armenta-Villegas, L., Santacruz-Ortega, H. et al. Characterization of Anemopsis californica essential oil–β-cyclodextrin inclusion complex as antioxidant prolonged-release system. Chem. Pap. 71, 1331–1342 (2017). https://doi.org/10.1007/s11696-016-0125-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11696-016-0125-0

Keywords

Navigation