Skip to main content
Log in

Vagal Blocking for Obesity Control: a Possible Mechanism-Of-Action

  • Original Contributions
  • Published:
Obesity Surgery Aims and scope Submit manuscript

An Erratum to this article was published on 14 September 2016

Abstract

Background

Recently, the US FDA has approved “vagal blocking therapy or vBLoc® therapy” as a new treatment for obesity. The aim of the present study was to study the mechanism-of-action of “VBLOC” in rat models.

Methods

Rats were implanted with VBLOC, an intra-abdominal electrical device with leads placed around gastric vagal trunks through an abdominal incision and controlled by wireless device. Body weight, food intake, hunger/satiety, and metabolic parameters were monitored by a comprehensive laboratory animal monitoring system. Brain-gut responses were analyzed physiologically.

Results

VBLOC reduced body weight and food intake, which was associated with increased satiety but not with decreased hunger. Brain activities in response to VBLOC included increased gene expression of leptin and CCKb receptors, interleukin-1β, tumor necrosis factor, and transforming growth factor β1 in the brainstem; increased CCK, somatostatin, and tyrosine hydroxylase in the hippocampus; increased NPY, AgRP, and Foxa2 in the hypothalamus; and reduced CCKb receptor, melanocortin 4 receptor, and insulin receptor in the hypothalamus. Plasma concentrations of CCK, gastrin, glucagon, GLP-1, and PYY and gastric acid secretion were unchanged in response to VBLOC.

Conclusions

Based on the present study, we may suggest that VBLOC induces satiety through vagal signaling, leading to reduced food intake and loss of body weight.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Buchwald H, Oien DM. Metabolic/bariatric surgery worldwide 2008. Obes Surg. 2009;19(12):1605–11.

    Article  PubMed  Google Scholar 

  2. Colquitt JL, Picot J, Loveman E, Clegg AJ 2009 Surgery for obesity. Cochrane Database Syst Rev.(2):CD003641.

  3. Picot J, Jones J, Colquitt JL, Gospodarevskaya E, Loveman E, Baxter L, et al. The clinical effectiveness and cost-effectiveness of bariatric (weight loss) surgery for obesity: a systematic review and economic evaluation. Health Technol Assess. 2009;13(41):1–190 .215–357, iii-iv

    Article  CAS  Google Scholar 

  4. Sam AH, Troke RC, Tan TM, Bewick GA. The role of the gut/brain axis in modulating food intake. Neuropharmacology. 2012;63(1):46–56.

    Article  CAS  PubMed  Google Scholar 

  5. Schwartz MW, Woods SC, Porte D, Seeley RJ, Baskin DG. Central nervous system control of food intake. Nature. 2000;404(6778):661–71.

    CAS  PubMed  Google Scholar 

  6. Dockray GJ. Enteroendocrine cell signalling via the vagus nerve. Curr Opin Pharmacol. 2013;13(6):954–8.

    Article  CAS  PubMed  Google Scholar 

  7. Gautron L, Elmquist JK, Williams KW. Neural control of energy balance: translating circuits to therapies. Cell. 2015;161(1):133–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Ben-Menachem E, Hamberger A, Hedner T, Hammond EJ, Uthman BM, Slater J, et al. Effects of vagus nerve stimulation on amino acids and other metabolites in the CSF of patients with partial seizures. Epilepsy Res. 1995;20(3):221–7.

    Article  CAS  PubMed  Google Scholar 

  9. Grill HJ, Hayes MR. The nucleus tractus solitarius: a portal for visceral afferent signal processing, energy status assessment and integration of their combined effects on food intake. Int J Obes. 2009;33(1):10.

    Google Scholar 

  10. Imatake K, Matsui T, Moriyama M. The effect and mechanism of action of capsaicin on gastric acid output. J Gastroenterol. 2009;44(5):396–404.

    Article  CAS  PubMed  Google Scholar 

  11. Brunicardi FC, Shavelle D, Andersen D. Neural regulation of the endocrine pancreas. Int J Pancreatol. 1995;18(3):177–95.

    CAS  PubMed  Google Scholar 

  12. Hampton T. Electric stimulation device approved to treat obesity. JAMA. 2015;313(8):785.

    Google Scholar 

  13. Ikramuddin S, Blackstone RP, Brancatisano A, Toouli J, Shah SN, Wolfe BM, et al. Effect of reversible intermittent intra-abdominal vagal nerve blockade on morbid obesity: the ReCharge randomized clinical trial. JAMA. 2014;312(9):915–22.

    Article  CAS  PubMed  Google Scholar 

  14. Furnes MW, Zhao CM, Chen D, et al. Obes Surg. 2009;19(10):1430–8.

    Article  PubMed  Google Scholar 

  15. Furnes MW, Tommeras K, Arum CJ, Zhao CM, Chen D. Gastric bypass surgery causes body weight loss without reducing food intake in rats. Obes Surg. 2008;18(4):415–22.

    Article  PubMed  Google Scholar 

  16. Debas HT, Carvajal SH. Vagal regulation of acid secretion and gastrin release. Yale J Biol Med. 1994;67(3–4):145–51.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Chen D, Zhao CM. Genetically engineered mice: a new paradigm to study gastric physiology. Curr Opin Gastroenterol. 2007;23(6):602–6.

    Article  PubMed  Google Scholar 

  18. Gil K, Bugajski A, Thor P. Electrical vagus nerve stimulation decreases food consumption and weight gain in rats fed a high-fat diet. J Physiol Pharmacol. 2011;62(6):637–46.

    CAS  PubMed  Google Scholar 

  19. Ziomber A, Juszczak K, Kaszuba-Zwoinska J, Machowska A, Zaraska K, Gil K, et al. Magnetically induced vagus nerve stimulation and feeding behavior in rats. J Physiol Pharmacol. 2009;60(3):71–7.

    CAS  PubMed  Google Scholar 

  20. Bugajski AJ, Gil K, Ziomber A, Zurowski D, Zaraska W, Thor PJ. Effect of long-term vagal stimulation on food intake and body weight during diet induced obesity in rats. J Physiol Pharmacol. 2007;1:5–12.

    Google Scholar 

  21. Krolczyk G, Laskiewicz J, Sobocki J, Matyja A, Kolasinska-Kloch W, Thor PJ. The effects of baclofen on the feeding behaviour and body weight of vagally stimulated rats. J Physiol Pharmacol. 2005;56(1):121–31.

    CAS  PubMed  Google Scholar 

  22. Laskiewicz J, Krolczyk G, Zurowski G, Sobocki J, Matyja A, Thor PJ. Effects of vagal neuromodulation and vagotomy on control of food intake and body weight in rats. J Physiol Pharmacol. 2003;54(4):603–10.

    CAS  PubMed  Google Scholar 

  23. Sobocki J, Fourtanier G, Estany J, Otal P. Does vagal nerve stimulation affect body composition and metabolism? Experimental study of a new potential technique in bariatric surgery. Surgery. 2006;139(2):209–16.

    Article  PubMed  Google Scholar 

  24. Val-Laillet D, Biraben A, Randuineau G, Malbert CH. Chronic vagus nerve stimulation decreased weight gain, food consumption and sweet craving in adult obese minipigs. Appetite. 2010;55(2):245–52.

    Article  CAS  PubMed  Google Scholar 

  25. Silva JP, von Meyenn F, Howell J, Thorens B, Wolfrum C, Stoffel M. Regulation of adaptive behaviour during fasting by hypothalamic Foxa2. Nature. 2009;462(7273):646–50.

    Article  CAS  PubMed  Google Scholar 

  26. Clerc P, Coll Constans MG, Lulka H, Broussaud S, Guigne C, Leung-Theung-Long S, et al. Involvement of cholecystokinin 2 receptor in food intake regulation: hyperphagia and increased fat deposition in cholecystokinin 2 receptor-deficient mice. Endocrinology. 2007;148(3):1039–49.

    Article  CAS  PubMed  Google Scholar 

  27. Huszar D, Lynch CA, Fairchild-Huntress V, Dunmore JH, Fang Q, Berkemeier LR, et al. Targeted disruption of the melanocortin-4 receptor results in obesity in mice. Cell. 1997;88(1):131–41.

    Article  CAS  PubMed  Google Scholar 

  28. Revesz D, Tjernstrom M, Ben-Menachem E, Thorlin T. Effects of vagus nerve stimulation on rat hippocampal progenitor proliferation. Exp Neurol. 2008;214(2):259–65.

    Article  PubMed  Google Scholar 

  29. Guan Y, Tang M, Jiang Z, Peeters TL. Excitatory effects of motilin in the hippocampus on gastric motility in rats. Brain Res. 2003;984(1–2):33–41.

    Article  CAS  PubMed  Google Scholar 

  30. Diano S, Farr SA, Benoit SC, McNay EC, da Silva I, Horvath B, et al. Ghrelin controls hippocampal spine synapse density and memory performance. Nat Neurosci. 2006;9(3):381–8.

    Article  CAS  PubMed  Google Scholar 

  31. Davidson TL, Kanoski SE, Walls EK, Jarrard LE. Memory inhibition and energy regulation. Physiol Behav. 2005;86(5):731–46.

    Article  CAS  PubMed  Google Scholar 

  32. Forloni G, Fisone G, Guaitani A, Ladinsky H, Consolo S. Role of the hippocampus in the sex-dependent regulation of eating behavior: studies with kainic acid. Physiol Behav. 1986;38(3):321–6.

    Article  CAS  PubMed  Google Scholar 

  33. Tracy AL, Jarrard LE, Davidson TL, et al. Behav Brain Res. 2001;127(1–2):13–23.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Duan Chen.

Ethics declarations

Conflict of Interest

Authors 1–7, 9–15 have nothing to disclose in connection with this study.

Author 8 has received grants from Novo Nordisk, Zealand Pharmaceuticals, AstraZeneca, Sanofi, MSD, GSK, Intarcia, Norvartis, and Hamni, outside the submitted work.

Ethical Approval

All applicable institutional and/or national guidelines for the care and use of animals were followed.

Informed Consent

Does not apply.

Additional information

An erratum to this article is available at http://dx.doi.org/10.1007/s11695-016-2370-2.

Electronic supplementary material

ESM 1

(DOCX 28 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Johannessen, H., Revesz, D., Kodama, Y. et al. Vagal Blocking for Obesity Control: a Possible Mechanism-Of-Action. OBES SURG 27, 177–185 (2017). https://doi.org/10.1007/s11695-016-2278-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11695-016-2278-x

Keywords

Navigation