Skip to main content

Advertisement

Log in

Sleeve Gastrectomy Decreases Body Weight, Whole-Body Adiposity, and Blood Pressure Even in Aged Diet-Induced Obese Rats

  • Original Contributions
  • Published:
Obesity Surgery Aims and scope Submit manuscript

Abstract

Background

Aging and obesity are two conditions associated with increased risk of cardiovascular disease. Our aim was to analyze whether an advanced age affects the beneficial effects of sleeve gastrectomy on weight loss and blood pressure in an experimental model of diet-induced obesity (DIO).

Methods

Young (6-month-old) and old (18-month-old) male Wistar DIO rats (n = 101) were subjected to surgical (sham operation and sleeve gastrectomy) or dietary interventions (pair-fed to the amount of food eaten by sleeve gastrectomized animals). Systolic (SBP), diastolic (DBP), and mean (MBP) blood pressure values and heart rate (HR) were recorded in conscious, resting animals by non-invasive tail-cuff plethysmography before and 4 weeks after surgical or dietary interventions.

Results

Aging was associated with higher (P < 0.05) body weight and subcutaneous and perirenal fat mass as well as mild cardiac hypertrophy. Sleeve gastrectomy induced a reduction in body weight, whole-body adiposity, and serum total ghrelin in both young and old DIO rats. The younger group achieved a higher excess weight loss than the older group (164 ± 60 vs. 82 ± 17 %, P < 0.05). A significant (P < 0.05) decrease in insulin resistance, SBP, DBP, MBP, and HR without changes in heart weight was observed after sleeve gastrectomy independently of age.

Conclusion

Our results provide evidence for the effectiveness of sleeve gastrectomy without increased operative risk in body weight and blood pressure reduction even in aged animals via endocrine changes that go beyond the mere caloric restriction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

Adipo-IR:

Adipocyte insulin resistance index

CVD:

Cardiovascular disease

DBP:

Diastolic blood pressure

EWL:

Excess weight loss

HOMA:

Homeostasis model assessment

HR:

Heart rate

MBP:

Mean blood pressure

QUICKI:

Quantitative insulin sensitivity check index

SBP:

Systolic blood pressure

WAT:

White adipose tissue

References

  1. Frühbeck G, Toplak H, Woodward E, et al. Obesity: the gateway to ill health—an EASO position statement on a rising public health, clinical and scientific challenge in Europe. Obes Facts. 2013;6(2):117–20.

    Article  PubMed  Google Scholar 

  2. Fakhouri TH, Ogden CL, Carroll MD, et al. Prevalence of obesity among older adults in the United States, 2007–2010. NCHS Data Brief. 2012;2012(106):1–8.

    Google Scholar 

  3. Apovian CM, Gokce N. Obesity and cardiovascular disease. Circulation. 2012;125(9):1178–82.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Zamboni M, Mazzali G, Zoico E, et al. Health consequences of obesity in the elderly: a review of four unresolved questions. Int J Obes. 2005;29(9):1011–29.

    Article  CAS  Google Scholar 

  5. Lavie CJ, Milani RV, Ventura HO. Obesity and cardiovascular disease: risk factor, paradox, and impact of weight loss. J Am Coll Cardiol. 2009;53(21):1925–32.

    Article  PubMed  Google Scholar 

  6. Sjöström L, Narbro K, Sjöström CD, et al. Effects of bariatric surgery on mortality in Swedish obese subjects. N Engl J Med. 2007;357(8):741–52.

    Article  PubMed  Google Scholar 

  7. Sjöström CD, Lystig T, Lindroos AK. Impact of weight change, secular trends and ageing on cardiovascular risk factors: 10-year experiences from the SOS study. Int J Obes. 2011;35(11):1413–20.

    Article  Google Scholar 

  8. Fried M, Yumuk V, Oppert JM, et al. Interdisciplinary European guidelines on metabolic and bariatric surgery. Obes Surg. 2014;24(1):42–55.

    Article  CAS  PubMed  Google Scholar 

  9. Mechanick JI, Youdim A, Jones DB, et al. Clinical practice guidelines for the perioperative nutritional, metabolic, and nonsurgical support of the bariatric surgery patient—2013 update: cosponsored by American Association of Clinical Endocrinologists, The Obesity Society, and American Society for Metabolic & Bariatric Surgery. Obesity (Silver Spring). 2013;21 Suppl 1:S1–27.

    Article  CAS  Google Scholar 

  10. Rosenthal RJ, Diaz AA, Arvidsson D, et al. International Sleeve Gastrectomy Expert Panel Consensus Statement: best practice guidelines based on experience of >12,000 cases. Surg Obes Relat Dis. 2012;8(1):8–19.

    Article  PubMed  Google Scholar 

  11. Gagner M, Deitel M, Erickson AL, et al. Survey on laparoscopic sleeve gastrectomy (LSG) at the Fourth International Consensus Summit on Sleeve Gastrectomy. Obes Surg. 2013;23(12):2013–7.

    Article  PubMed  Google Scholar 

  12. de Bona CJ, Bettiol J, D’Acampora AJ, et al. Sleeve gastrectomy model in Wistar rats. Obes Surg. 2007;17(7):957–61.

    Article  Google Scholar 

  13. Valentí V, Martín M, Ramírez B, et al. Sleeve gastrectomy induces weight loss in diet-induced obese rats even if high-fat feeding is continued. Obes Surg. 2011;21(9):1438–43.

    Article  PubMed  Google Scholar 

  14. Wilson-Perez HE, Seeley RJ. The effect of vertical sleeve gastrectomy on a rat model of polycystic ovarian syndrome. Endocrinology. 2011;152(10):3700–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Rodríguez A, Becerril S, Valentí V, et al. Sleeve gastrectomy reduces blood pressure in obese (fa/fa) Zucker rats. Obes Surg. 2012;22(2):309–15.

    Article  PubMed  Google Scholar 

  16. Rodríguez A, Becerril S, Valentí V, et al. Short-term effects of sleeve gastrectomy and caloric restriction on blood pressure in diet-induced obese rats. Obes Surg. 2012;22(9):1481–90.

    Article  PubMed  Google Scholar 

  17. Frühbeck G, Alonso R, Marzo F, et al. A modified method for the indirect quantitative analysis of phytate in foodstuffs. Anal Biochem. 1995;225(2):206–12.

    Article  PubMed  Google Scholar 

  18. Becerril S, Rodríguez A, Catalán V, et al. Deletion of inducible nitric-oxide synthase in leptin-deficient mice improves brown adipose tissue function. PLoS ONE. 2010;5(6):e10962.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Lancha A, Moncada R, Valentí V, et al. Effect of sleeve gastrectomy on osteopontin circulating levels and expression in adipose tissue and liver in rats. Obes Surg. 2014;24(10):1702–8.

    Article  PubMed  Google Scholar 

  20. Muruzábal FJ, Frühbeck G, Gómez-Ambrosi J, et al. Immunocytochemical detection of leptin in non-mammalian vertebrate stomach. Gen Comp Endocrinol. 2002;128(2):149–52.

    Article  PubMed  Google Scholar 

  21. Bell LN, Wang J, Muralidharan S, et al. Relationship between adipose tissue insulin resistance and liver histology in nonalcoholic steatohepatitis: a pioglitazone versus vitamin E versus placebo for the treatment of nondiabetic patients with nonalcoholic steatohepatitis trial follow-up study. Hepatology. 2012;56(4):1311–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Fontana L, Kennedy BK, Longo VD, et al. Medical research: treat ageing. Nature. 2014;511(7510):405–7.

    Article  CAS  PubMed  Google Scholar 

  23. Sjöström L, Lindroos AK, Peltonen M, et al. Lifestyle, diabetes, and cardiovascular risk factors 10 years after bariatric surgery. N Engl J Med. 2004;351(26):2683–93.

    Article  PubMed  Google Scholar 

  24. Sjöström L. Review of the key results from the Swedish Obese Subjects (SOS) trial—a prospective controlled intervention study of bariatric surgery. J Intern Med. 2012;273(3):219–34.

    Article  Google Scholar 

  25. Schauer PR, Bhatt DL, Kirwan JP, et al. Bariatric surgery versus intensive medical therapy for diabetes—3-year outcomes. N Engl J Med. 2014;370(21):2002–13.

    Article  PubMed  Google Scholar 

  26. Quebbemann B, Engstrom D, Siegfried T, et al. Bariatric surgery in patients older than 65 years is safe and effective. Surg Obes Relat Dis. 2005;1(4):389–92.

    Article  PubMed  Google Scholar 

  27. Stefater MA, Pérez-Tilve D, Chambers AP, et al. Sleeve gastrectomy induces loss of weight and fat mass in obese rats, but does not affect leptin sensitivity. Gastroenterology. 2010;138(7):2426–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Schneck AS, Iannelli A, Patouraux S, et al. Effects of sleeve gastrectomy in high fat diet-induced obese mice: respective role of reduced caloric intake, white adipose tissue inflammation and changes in adipose tissue and ectopic fat depots. Surg Endosc. 2014;28(2):592–602.

    Article  PubMed  Google Scholar 

  29. Zhou D, Jiang X, Ding W, et al. Impact of bariatric surgery on ghrelin and obestatin levels in obesity or type 2 diabetes mellitus rat model. J Diabetes Res. 2014;2014:569435.

    PubMed  PubMed Central  Google Scholar 

  30. Flum DR, Salem L, Elrod JA, et al. Early mortality among Medicare beneficiaries undergoing bariatric surgical procedures. JAMA. 2005;294(15):1903–8.

    Article  CAS  PubMed  Google Scholar 

  31. Kral JG, Otterbeck P, Touza MG. Preventing and treating the accelerated ageing of obesity. Maturitas. 2010;66(3):223–30.

    Article  PubMed  Google Scholar 

  32. Soto FC, Gari V, de la Garza JR, et al. Sleeve gastrectomy in the elderly: a safe and effective procedure with minimal morbidity and mortality. Obes Surg. 2013;23(9):1445–9.

    Article  PubMed  Google Scholar 

  33. Burchett MA, McKenna DT, Selzer DJ, et al. Laparoscopic sleeve gastrectomy is safe and effective in elderly patients: a comparative analysis. Obes Surg. 2015;25(2):222–8.

  34. Mizrahi I, Alkurd A, Ghanem M, et al. Outcomes of laparoscopic sleeve gastrectomy in patients older than 60 years. Obes Surg. 2014;24(6):855–60.

    Article  PubMed  Google Scholar 

  35. Spaniolas K, Trus TL, Adrales GL, et al. Early morbidity and mortality of laparoscopic sleeve gastrectomy and gastric bypass in the elderly: a NSQIP analysis. Surg Obes Relat Dis. 2014;10(4):584–8.

    Article  PubMed  Google Scholar 

  36. Sengupta P. The laboratory rat: relating its age with human's. Int J Prev Med. 2013;4(6):624–30.

    PubMed  PubMed Central  Google Scholar 

  37. Frühbeck G, Díez Caballero A, Gil MJ. Fundus functionality and ghrelin concentrations after bariatric surgery. N Engl J Med. 2004;350(3):308–9.

    Article  PubMed  Google Scholar 

  38. Tschöp M, Smiley DL, Heiman ML. Ghrelin induces adiposity in rodents. Nature. 2000;407:908–13.

    Article  PubMed  Google Scholar 

  39. Nogueiras R, Pfluger P, Tovar S, et al. Effects of obestatin on energy balance and growth hormone secretion in rodents. Endocrinology. 2007;148(1):21–6.

    Article  CAS  PubMed  Google Scholar 

  40. López M, Lage R, Saha AK, et al. Hypothalamic fatty acid metabolism mediates the orexigenic action of ghrelin. Cell Metab. 2008;7(5):389–99.

    Article  PubMed  Google Scholar 

  41. Rodríguez A, Gómez-Ambrosi J, Catalán V, et al. Acylated and desacyl ghrelin stimulate lipid accumulation in human visceral adipocytes. Int J Obes. 2009;33(5):541–52.

    Article  Google Scholar 

  42. Miegueu P, Pierre DS, Broglio F, et al. Effect of desacyl ghrelin, obestatin and related peptides on triglyceride storage, metabolism and GHSR signaling in 3T3-L1 adipocytes. J Cell Biochem. 2011;112:704–14.

    Article  CAS  PubMed  Google Scholar 

  43. Gurriarán-Rodríguez U, Al-Massadi O, Crujeiras AB, et al. Preproghrelin expression is a key target for insulin action on adipogenesis. J Endocrinol. 2011;210(2):R1–7.

    Article  PubMed  Google Scholar 

  44. Rodriguez A. Novel molecular aspects of ghrelin and leptin in the control of adipobiology and the cardiovascular system. Obes Facts. 2014;7(2):82–95.

    Article  CAS  PubMed  Google Scholar 

  45. Chambers AP, Jessen L, Ryan KK, et al. Weight-independent changes in blood glucose homeostasis after gastric bypass or vertical sleeve gastrectomy in rats. Gastroenterology. 2011;141(3):950–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Kadera BE, Portenier DD, Yurcisin BM, et al. Evidence for a metabolic mechanism in the improvement of type 2 diabetes after sleeve gastrectomy in a rodent model. Surg Obes Relat Dis. 2013;9(3):447–52.

    Article  PubMed  Google Scholar 

  47. Rizzello M, Abbatini F, Casella G, et al. Early postoperative insulin-resistance changes after sleeve gastrectomy. Obes Surg. 2010;20(1):50–5.

    Article  PubMed  Google Scholar 

  48. Schauer PR, Kashyap SR, Wolski K, et al. Bariatric surgery versus intensive medical therapy in obese patients with diabetes. N Engl J Med. 2012;366(17):1567–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Kashyap SR, Bhatt DL, Wolski K, et al. Metabolic effects of bariatric surgery in patients with moderate obesity and type 2 diabetes: analysis of a randomized control trial comparing surgery with intensive medical treatment. Diabetes Care. 2013;36(8):2175–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Cowie CC, Rust KF, Byrd-Holt DD, et al. Prevalence of diabetes and high risk for diabetes using A1C criteria in the U.S. population in 1988-2006. Diabetes Care. 2010;33(3):562–8.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Willey KA, Singh MA. Battling insulin resistance in elderly obese people with type 2 diabetes: bring on the heavy weights. Diabetes Care. 2003;26(5):1580–8.

    Article  PubMed  Google Scholar 

  52. Eckel RH, Krauss RM. American heart association call to action: obesity as a major risk factor for coronary heart disease. AHA nutrition committee. Circulation. 1998;97(21):2099–100.

    Article  CAS  PubMed  Google Scholar 

  53. Zhang H, Pu Y, Chen J, et al. Gastrointestinal intervention ameliorates high blood pressure through antagonizing overdrive of the sympathetic nerve in hypertensive patients and rats. J Am Heart Assoc. 2014;3(5):e000929.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Seravalle G, Colombo M, Perego P, et al. Long-term sympathoinhibitory effects of surgically induced weight loss in severe obese patients. Hypertension. 2014;64(2):431–7.

    Article  CAS  PubMed  Google Scholar 

  55. Erdos B, Kirichenko N, Whidden M, et al. Effect of age on high-fat diet-induced hypertension. Am J Physiol Heart Circ Physiol. 2011;301(1):H164–72.

    Article  CAS  PubMed  Google Scholar 

  56. Rodríguez A, Fortuño A, Gómez-Ambrosi J, et al. The inhibitory effect of leptin on angiotensin II-induced vasoconstriction in vascular smooth muscle cells is mediated via a nitric oxide-dependent mechanism. Endocrinology. 2007;148(1):324–31.

    Article  PubMed  Google Scholar 

  57. Zeidan A, Hunter JC, Javadov S, et al. mTOR mediates RhoA-dependent leptin-induced cardiomyocyte hypertrophy. Mol Cell Biochem. 2011;352(1-2):99–108.

    Article  CAS  PubMed  Google Scholar 

  58. Rajapurohitam V, Izaddoustdar F, Martinez-Abundis E, et al. Leptin-induced cardiomyocyte hypertrophy reveals both calcium-dependent and calcium-independent/RhoA-dependent calcineurin activation and NFAT nuclear translocation. Cell Signal. 2012;24(12):2283–90.

    Article  CAS  PubMed  Google Scholar 

  59. Nickola MW, Wold LE, Colligan PB, et al. Leptin attenuates cardiac contraction in rat ventricular myocytes. Role of NO Hypertension. 2000;36(4):501–5.

    Article  CAS  PubMed  Google Scholar 

  60. Dong F, Zhang X, Ren J. Leptin regulates cardiomyocyte contractile function through endothelin-1 receptor-NADPH oxidase pathway. Hypertension. 2006;47(2):222–9.

    Article  CAS  PubMed  Google Scholar 

  61. Rodríguez A, Gómez-Ambrosi J, Catalán V, et al. Vasodilator effect of ghrelin in the rat aorta. Endocrinol Nutr. 2008;55(10):448–53.

    Article  PubMed  Google Scholar 

  62. Kawczynska-Drozdz A, Olszanecki R, Jawien J, et al. Ghrelin inhibits vascular superoxide production in spontaneously hypertensive rats. Am J Hypertens. 2006;19(7):764–7.

    Article  CAS  PubMed  Google Scholar 

  63. Tesauro M, Schinzari F, Rovella V, et al. Ghrelin restores the endothelin 1/nitric oxide balance in patients with obesity-related metabolic syndrome. Hypertension. 2009;54(5):995–1000.

    Article  CAS  PubMed  Google Scholar 

  64. Rodríguez A, Gómez-Ambrosi J, Catalán V, et al. Association of plasma acylated ghrelin with blood pressure and left ventricular mass in patients with metabolic syndrome. J Hypertens. 2010;28(3):560–7.

    Article  PubMed  Google Scholar 

  65. Frühbeck G. Bariatric and metabolic surgery: a shift in eligibility and success criteria. Nat Rev Endocrinol. 2015;11(8):465–77.

    Article  PubMed  Google Scholar 

  66. Kojima M, Hosoda H, Date Y, et al. Ghrelin is a growth-hormone-releasing acylated peptide from stomach. Nature. 1999;402(6762):656–60.

    Article  CAS  PubMed  Google Scholar 

  67. Frühbeck G, Diez-Caballero A, Gil MJ, et al. The decrease in plasma ghrelin concentrations following bariatric surgery depends on the functional integrity of the fundus. Obes Surg. 2004;14:606–12.

    Article  PubMed  Google Scholar 

  68. Chen HY, Trumbauer ME, Chen AS, et al. Orexigenic action of peripheral ghrelin is mediated by neuropeptide Y and agouti-related protein. Endocrinology. 2004;145(6):2607–12.

    Article  CAS  PubMed  Google Scholar 

  69. Toshinai K, Yamaguchi H, Sun Y, et al. Des-acyl ghrelin induces food intake by a mechanism independent of the growth hormone secretagogue receptor. Endocrinology. 2006;147(5):2306–14.

    Article  CAS  PubMed  Google Scholar 

  70. Papamargaritis D, le Roux CW, Sioka E, et al. Changes in gut hormone profile and glucose homeostasis after laparoscopic sleeve gastrectomy. Surg Obes Relat Dis. 2013;9(2):192–201.

    Article  PubMed  Google Scholar 

  71. Jiménez A, Mari A, Casamitjana R, et al. GLP-1 and glucose tolerance after sleeve gastrectomy in morbidly obese subjects with type 2 diabetes. Diabetes. 2014;63(10):3372–7.

    Article  PubMed  Google Scholar 

  72. Baraboi ED, Li W, Labbe SM, et al. Metabolic changes induced by the biliopancreatic diversion in diet-induced obesity in male rats: the contributions of sleeve gastrectomy and duodenal switch. Endocrinology. 2015;156(4):1316–29.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge the valuable collaboration of all the staff of the breeding house of the University of Navarra.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gema Frühbeck.

Ethics declarations

Conflict of interest

R.M., A.R., S.B., L.M.-G., V.V., B.R., J. A.-C., S.F., V.C., J.G.-A., and G.F. declare that they have no conflict of interest.

This article does not contain any studies with human participants.

Funding

This work was supported by Fondo de Investigación Sanitaria-FEDER (FIS PI12/00515 and PI13/01430) from the Spanish Instituto de Salud Carlos III the Department of Health of the Gobierno de Navarra (61/2014), Plan de Investigación de la Universidad de Navarra (project PIUNA 2011-14), and Fundación Caja Navarra (20-2014). CIBER de Fisiopatología de la Obesidad y Nutrición (CIBERobn) is an initiative of the Instituto de Salud Carlos III, Spain.

Additional information

Rafael Moncada and Amaia Rodríguez contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moncada, R., Rodríguez, A., Becerril, S. et al. Sleeve Gastrectomy Decreases Body Weight, Whole-Body Adiposity, and Blood Pressure Even in Aged Diet-Induced Obese Rats. OBES SURG 26, 1549–1558 (2016). https://doi.org/10.1007/s11695-015-1919-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11695-015-1919-9

Keywords

Navigation