Skip to main content

Advertisement

Log in

The Effects of Chronically Increased Intra-abdominal Pressure on the Rabbit Diaphragm

  • Animal Research
  • Published:
Obesity Surgery Aims and scope Submit manuscript

Abstract

Background

Diaphragmatic muscular remodeling is caused by various conditions and was mainly studied in pulmonary pathologies and chronic alterations of intra-thoracic pressure. We investigate the effect of the chronically increased intra-abdominal pressure (IAP) on the diaphragm by morphological and biochemical analysis.

Methods

Thirty rabbits were divided into control and study groups. IAP was increased in group B to 12 mmHg for 2 months. The left hemidiaphragm underwent morphological, while the right underwent biochemical analysis.

Results

In H&E, all fibers were normal. ATPase analysis demonstrated that type I fibers show no differences between groups. Type ΙΙΑ were decreased (p = 0.016) while type ΙΙΒ/X fibers were increased (p = 0.025) in group B. Fibers with resistance to fatigue were decreased in group B (p = 0.024). In group B, biochemical activity for glutathione reductase (p = 0.004), glutathione peroxidase (p = 0.021), protein carbonylation (0.029), lipid peroxidation (p = 0.005), and balance of preoxidative–antioxidative factors (p = 0.006) was increased.

Conclusions

Chronically increased IAP induces alterations to the rabbit diaphragm. Adaptation, equivalent to strenuous contraction, transforms the diaphragm to be functionally more efficient toward workload but makes it vulnerable against oxidative stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Edwards RHT, Faulkner JA. Structure and function of the respiratory muscles. In: Roussos C, Macklem PT, editors. The thorax, part A. New York: Marcel Dekker; 1986. p. 297–326.

    Google Scholar 

  2. Engel WK. The essentiality of histo and cytochemical studies of skeletal muscles in the investigation of neuromuscular disease. Neurology. 1972;12:778–94.

    Google Scholar 

  3. Leith DE, Bradley M. Ventilatory muscle strength and endurance training. J Appl Physiol. 1976;41:508–16.

    PubMed  CAS  Google Scholar 

  4. Powers SK, Grinton S, Lawler J, et al. High intensity exercise training-induced metabolic alterations in respiratory muscles. Respir Physiol. 1992;89:169–77.

    Article  PubMed  CAS  Google Scholar 

  5. Keens TG, Chen V, Patel P, et al. Cellular adaptations of the ventilatory muscles to a chronic increased respiratory load. J Appl Physiol. 1978;44:905–8.

    PubMed  CAS  Google Scholar 

  6. Papavramidis TS, Kotidis E, Ioannidis K, et al. Diaphragmatic adaptation following intra-abdominal weight charging. Obes Surg. 2010;21:1612–6.

    Article  Google Scholar 

  7. Papavramidis TS, Lazou TP, Cheva A, et al. Chronically increased intra-abdominal pressure: validating a model. Obes Surg. 2010;20(7):900–5.

    Article  PubMed  Google Scholar 

  8. Karnak I, Aksöz E, Ekinci S, et al. Increased maternal intra-abdominal pressure alters the contractile properties of the fetal rabbit bladder. J Pediatr Surg. 2008;43:1711–7.

    Article  PubMed  Google Scholar 

  9. Sugerman H, Windsor A, Bessos M, et al. Intra-abdominal pressure, sagittal abdominal diameter and obesity comorbidity. J Intern Med. 1997;241:71–9.

    Article  PubMed  CAS  Google Scholar 

  10. Sugerman HJ. Effects of increased intra-abdominal pressure in severe obesity. Surg Clin North Am. 2001;81:1063–75.

    Article  PubMed  CAS  Google Scholar 

  11. Varela JE, Hinojosa M, Nguyen N. Correlations between intra-abdominal pressure and obesity-related co-morbidities. Surg Obes Relat Dis. 2009;5:524–8.

    Article  PubMed  Google Scholar 

  12. Bhatia SJ, Narawane NM, Shalia KK, et al. Effect of tense ascites on esophageal body motility and lower esophageal sphincter pressure. Indian J Gastroenterol. 1999;18:63–5.

    PubMed  CAS  Google Scholar 

  13. Twardowski ZJ, Tully RJ, Ersoy FF, et al. Computerized tomography with and without intraperitoneal contrast for determination of intraabdominal fluid distribution and diagnosis of complications in peritoneal dialysis patients. ASAIO Trans. 1990;36:95–103.

    Article  PubMed  CAS  Google Scholar 

  14. Papavramidis TS, Duros V, Michalopoulos A, et al. Intra-abdominal pressure alterations after large pancreatic pseudocyst transcutaneous drainage. BMC Gastroenterol. 2009;9:42.

    Article  PubMed  Google Scholar 

  15. Van der Laan L, Nagel PH, Lohle PN, et al. Retroperitoneal haematoma seen on CT scan in 2 patients with abdominal symptoms, aneurysm of the abdominal aorta and normal hemodynamics. Ned Tijdschr Geneeskd. 2005;149:2001–4.

    PubMed  Google Scholar 

  16. Zacchi P, Mearin F, Humbert P, et al. Effect of obesity on gastroesophageal resistance to flow in man. Dig Dis Sci. 1991;36:1473–80.

    Article  PubMed  CAS  Google Scholar 

  17. Sugrue M, Buist MD, Hourihan F, et al. Prospective study of intraabdominal hypertension and renal function after laparotomy. Br J Surg. 1995;82:235–8.

    Article  PubMed  CAS  Google Scholar 

  18. Sugrue M, Jones F, Deane SA, et al. Intraabdominal hypertension is an independent cause of postoperative renal impairment. Arch Surg. 1999;134:1082–5.

    Article  PubMed  CAS  Google Scholar 

  19. Kotidis EV, Papavramidis TS, Ioannidis K, et al. The effect of chronically increased intra-abdominal pressure on rectus abdominis muscle histology an experimental study on rabbits. J Surg Res. doi:10.1016/j.jss.2010.06.034

  20. Dubovitz V, Brooke HM. Muscle biopsy: a modern approach vol. 2. London: Saunders; 1973.

    Google Scholar 

  21. Alamdari DH, Paletas K, Pegiou T, et al. A novel assay for the evaluation of the prooxidant–antioxidant balance, before and after antioxidant vitamin administration in type II diabetes patients. Clin Biochem. 2007;40(3–4):248–54.

    Article  PubMed  CAS  Google Scholar 

  22. Ohkawa H, Ohishi N, Yagi K. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem. 1979;95(2):351–8.

    Article  PubMed  CAS  Google Scholar 

  23. Tatzber F, Griebenow S, Wonisch W, et al. Dual method for the determination of peroxidase activity and total peroxides-iodide leads to a significant increase of peroxidase activity in human sera. Anal Biochem. 2003;316:147–53.

    Article  PubMed  CAS  Google Scholar 

  24. Cribb AE, Leeder JS, Spielberg SP. Use of a microplate reader in assay of glutathione reductase using 5,5′-dithiobis(2-nitrobenzoic acid). Anal Biochem. 1989;183:195–6.

    Article  PubMed  CAS  Google Scholar 

  25. Paglia DE, Valentine WN. Studies on the quantitative and qualitative characterization of erythrocyte glutathione peroxidase. J Lab Clin Med. 1967;70:158–69.

    PubMed  CAS  Google Scholar 

  26. Teare JP, Punchard NA, Powell JJ, et al. Automated spectrophotometric method for determining oxidized and reduced glutathione in liver. Clin Chem. 1993;39:686–9.

    PubMed  CAS  Google Scholar 

  27. Alamdari DH, Kostidou E, Paletas K, et al. High sensitivity enzyme-linked immunosorbent assay (ELISA) method for measuring protein carbonyl in samples with low amounts of protein. Free Radical Biol Med. 2005;39:1362–7.

    Article  CAS  Google Scholar 

  28. Oliven A, Carmi N, Coleman R, et al. Age-related changes in upper airway muscles morphological and oxidative properties. Exp Gerontol. 2001;36(10):1673–86.

    Article  PubMed  CAS  Google Scholar 

  29. Rodrigues CJ, Rodrigues AJ, Bohm GM. Effects of aging on muscle fibers and collagen content of the diaphragm: a comparison with the rectus abdominis muscle. Gerontology. 1996;42(4):218–28.

    Article  PubMed  CAS  Google Scholar 

  30. Fox J, Garber P, Hoffman M, et al. Morphological characteristics of skeletal muscles in relation to gender. Aging Clin Exp Res. 2003;15(3):264–9.

    PubMed  Google Scholar 

  31. Sciote JJ, Horton MJ, Zyman Y, et al. Differential effects of diminished oestrogen and androgen levels on development of skeletal muscle fibers in hypogonadic mice. Acta Physiol Scand. 2001;172(3):179–87.

    Article  PubMed  CAS  Google Scholar 

  32. De Troyer A, Sampson M, Sigrist S, et al. The diaphragm: two muscles. Science. 1981;213(4504):37–8.

    Google Scholar 

  33. Capdevilla X, Lopez S, Bernard N, et al. Effects of controlled mechanical ventilation on respiratory muscle contractile properties in rabbits. Intensive Care Med. 2003;29:103–10.

    Google Scholar 

  34. Moore BJ, Feldman HA, Reid B. Developmental changes in diaphragm contractile properties. J Appl Physiol. 1993;75(2):522–6.

    PubMed  CAS  Google Scholar 

  35. Yang L, Bourdon J, Gottfried SB, et al. Regulation of myosin heavy chain gene expression after short-term diaphragm inactivation. Am J Physiol Lung Cell Mol Physiol. 1998;274:L980–9.

    CAS  Google Scholar 

  36. Esposito A, Germinario E, Zanin M, et al. Isoform switching in myofibrillar and excitation–contraction coupling proteins contributes to diminished contractile function in regenerating rat soleus muscle. J Appl Physiol. 2007;102:1640–8.

    Article  PubMed  CAS  Google Scholar 

  37. Hyaes A, Williams DA. Contractile properties of clenbuterol-treated mdx muscle are enhanced by low-intensity swimming. J Appl Physiol. 1997;82(2):435–9.

    Google Scholar 

  38. Dean RT, Fu S, Stoker R, et al. Biochemistry and pathology of radical-mediated protein oxidation. Biochem J. 1997;324:1–18.

    PubMed  CAS  Google Scholar 

  39. Morrissey PA, O’Brien NM. Dietary antioxidants in health and disease. Int Dairy J. 1998;8:463–72.

    Article  CAS  Google Scholar 

  40. Diaz PT, She ZW, Davis WB, et al. Hydroxylation of salicylate by the in vitro diaphragm: evidence for hydroxyl radical production during fatigue. J Appl Physiol. 1993;75:540–5.

    PubMed  CAS  Google Scholar 

  41. Reid MB, Shoji T, Moody MR, et al. Reactive oxygen in skeletal muscle. II. Extracellular release of free radicals. J Appl Physiol. 1992;73:1805–9.

    PubMed  CAS  Google Scholar 

  42. Supinski GS, Anzueto A. Oxygen-derived free radicals and the respiratory muscles. In: Roussos C, editor. The thorax. New York: Dekker; 1995. p. 349–86.

    Google Scholar 

  43. Shindoh C, DiMarco A, Thomas A, et al. Effect of N-acetylcysteine on diaphragm fatigue. J Appl Physiol. 1990;68:2107–13.

    PubMed  CAS  Google Scholar 

  44. Martin TP, Vailas AC, Durivage JB, et al. Quantitative histochemical determination of muscle enzymes: biochemical verification. J Histochem Cytochem. 1985;33:1053–9.

    Article  PubMed  CAS  Google Scholar 

  45. Preedy VR, Paice A, Mantle D, et al. Alcoholic myopathy: biochemical mechanisms. Drug Alcohol Depend. 2001;63:199–205.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank John Martos for taking care of the laboratory animals, Εkaterini Theologou for the technical support concerning the morphologic analysis, and Christina Befani for the assistance concerning the biochemical analysis.

Conflict of Interest

All authors have no conflict of interest to declare.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Theodossis S Papavramidis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Papavramidis, T.S., Kotidis, E., Ioannidis, K. et al. The Effects of Chronically Increased Intra-abdominal Pressure on the Rabbit Diaphragm. OBES SURG 22, 487–492 (2012). https://doi.org/10.1007/s11695-012-0587-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11695-012-0587-2

Keywords

Navigation