Skip to main content
Log in

Skin Vasodilator Function and Vasomotion in Patients with Morbid Obesity: Effects of Gastric Bypass Surgery

  • Clinical Research
  • Published:
Obesity Surgery Aims and scope Submit manuscript

Abstract

Obesity-associated microvascular dysfunction (MVD) involves different body tissues, including skin, and concurs to increased cardiovascular risk in obese patients (Ob-P). Generalized improvement of MVD is an important goal in obesity treatment. Since skin MVD mirrors generalized systemic MVD, skin microvascular investigation in prospective studies in Ob-P may surrogate microvascular investigation in organs more important for cardiovascular risk of the studied patients. In this prospective study, we measured forearm skin post-occlusive reactive hyperaemia (PORH), as percentage flow increase from baseline, and skin vasomotion in 37 Ob-P before Roux-en-Y gastric bypass (RYGB), and in 24 of them about 1 year after RYGB, using laser Doppler flowmetry (LDF). The spectral contribution of skin LDF signal oscillations in the frequency intervals of 0.01–0.02 Hz, 0.02–0.06 Hz, and 0.06–0.2 Hz—corresponding to endothelial-, sympathetic-, and myogenic-dependent vasomotion, respectively, was measured by means of spectral Fourier analysis. The same measurements were also performed in 28 healthy, lean subjects (HLS). Before RYGB, Ob-P had a significant reduction in PORH and in the all vasomotion parameters investigated, compared with HLS. After RYGB, Ob-P who completed the follow-up, had a significant weight loss (∼40 kg on average), together with a full normalisation in PORH and in vasomotion parameters, regardless of diabetes status. Surgically induced sustained weight loss resulted in full normalisation of skin microvascolar function in Ob-P about 1 year after RYGB. This result suggests a beneficial effect of sustained weight loss on generalized MVD of the studied Ob-P.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Hubert HB, Feinleib M, McNamara PM, et al. Obesity as an independent risk factor for cardiovascular disease: a 26-year follow-up of participants in the Framingham Heart Study. Circulation. 1983;67:968–77.

    CAS  PubMed  Google Scholar 

  2. Wilding J. Science, medicine, and the future. Obesity treatment. BMJ. 1997;315:997–1000.

    CAS  PubMed  Google Scholar 

  3. de Jongh RT, Serne EH. RGIJ et al. Impaired microvascular function in obesity: implications for obesity-associated microangiopathy, hypertension, and insulin resistance. Circulation. 2004;109:2529–35.

    Article  PubMed  Google Scholar 

  4. Jonk AM, Houben AJ, de Jongh RT, et al. Microvascular dysfunction in obesity: a potential mechanism in the pathogenesis of obesity-associated insulin resistance and hypertension. Physiology. 2007;22:252–60.

    Article  CAS  PubMed  Google Scholar 

  5. Stapleton PA, James ME, Goodwill GA, et al. Obesity and vascular dysfunction. Pathophysiology. 2008;2:79–89.

    Article  Google Scholar 

  6. de Jongh RT, Serné EH, IJzerman RG, et al. Impaired local microvascular vasodilatory effects of insulin and reduced skin microvascular vasomotion in obese women. Microvasc Res. 2008;75:256–62.

    Article  PubMed  Google Scholar 

  7. Steinberg HO, Chaker H, Leaming R, et al. Obesity/insulin resistance is associated with endothelial dysfunction. Implications for the syndrome of insulin resistance. J Clin Invest. 1996;97:2601–10.

    Article  CAS  PubMed  Google Scholar 

  8. Pierce GL, Beske SD, Lawson BR, et al. Weight loss alone improves conduit and resistance artery endothelial function in young and older overweight/obese adults. Hypertension. 2008;52:72–9.

    Article  CAS  PubMed  Google Scholar 

  9. Dengel DR, Kelly AS, Olson TP, et al. Effects of weight loss on insulin sensitivity and arterial stiffness in overweight adults. Metabolism. 2006;55:907–11.

    Article  CAS  PubMed  Google Scholar 

  10. Karason K, Wikstrand J, Sjöström L, et al. Weight loss and progression of early atherosclerosis in the carotid artery: a four-year controlled study of obese subjects. Int J Obes Relat Metab Disord. 1999;23:948–56.

    Article  CAS  PubMed  Google Scholar 

  11. Lind L, Zethelius B, Sundbom M, et al. Vasoreactivity is rapidly improved in obese subjects after gastric bypass surgery. Int J Obes. 2009;33:1390–5.

    Article  CAS  Google Scholar 

  12. Holowatz LA, Thompson-Torgerson CS, Kenney WL. The human cutaneous circulation as a model of generalized microvascular function. J Appl Physiol. 2008;105:370–2.

    Article  PubMed  Google Scholar 

  13. Rossi M, Ricco R, Carpi A. Spectral analysis of skin laser Doppler blood perfusion signal during skin hyperemia in response to acetylcholine iontophoresis and ischemia in normal subjects. Clin Hemorheol Microcirc. 2004;31:303–10.

    CAS  PubMed  Google Scholar 

  14. Stewart J, Kohen A, Brouder D, et al. Non-invasive interrogation of microvasculature for signs of endothelial dysfunction in patients with chronic renal failure. Am J Physiol Heart Circ Physiol. 2004;287:H2687–96.

    Article  CAS  PubMed  Google Scholar 

  15. Rossi M, Carpi A, Di Maria C, et al. Absent post-ischemic increase of blood flowmotion in the skin microcirculation of healthy chronic cigarette smokers. Clin Hemorheol Microcirc. 2007;36:163–71.

    CAS  PubMed  Google Scholar 

  16. Shamim-Uzzaman QA, Pfenninger D, Kehrer C, et al. Altered cutaneous microvascular responses to reactive hyperaemia in coronary artery disease: a comparative study with conduit vessel responses. Clin Sci (Lond). 2002;103:267–73.

    Google Scholar 

  17. The Expert Committee on the Diagnosis and Classification of Diabetes Mellitus. Report of the expert committee on the diagnosis and classification of diabetes mellitus. Diab Care. 2002;25:S5–20.

    Article  Google Scholar 

  18. Stefanovska A, Bracic M, Kvernmo K. Wavelet analysis of oscillations in the peripheral blood circulation measured by laser Doppler technique. IEEE Trans Biomed Eng. 1999;46:1230–9.

    Article  CAS  PubMed  Google Scholar 

  19. Kvernmo HD, Stefanovska A, Kirkeboen KA, et al. Oscillations in the human skin blood perfusion signal modified by endothelium-dependent and endothelium-independent vasodilators. Microvasc Res. 1999;57:298–309.

    Article  CAS  PubMed  Google Scholar 

  20. Benbow SJ, Pryce DW, Noblett K, et al. Flow motion in peripheral diabetic neuropathy. Clin Sci (Lond). 1995;88:191–6.

    CAS  Google Scholar 

  21. Schmiedel O, Schroeter ML, Harvey JN. Microalbuminuria in Type 2 diabetes indicates impaired microvascular vasomotion and perfusion. Am J Physiol Heart Circ Physiol. 2007;293:H3424–4231.

    Article  CAS  PubMed  Google Scholar 

  22. Binggeli C, Spieker LE, Corti R, et al. Statins enhance postischemic hyperemia in the skin circulation of hypercholesterolemic patients: a monitoring test of endothelial dysfunction for clinical practice? J Am Coll Cardiol. 2003;42:71–7.

    Article  CAS  PubMed  Google Scholar 

  23. Joyner MJ, Dietz NM, Shepherd JT. From Belfast to Mayo and beyond: the use and future of plethysmography to study blood flow in human limbs. J Appl Physiol. 2001;91:2431–41.

    CAS  PubMed  Google Scholar 

  24. Vuilleumier P, Decosterd D, Maillard M, et al. Postischemic forearm skin reactive hyperemia is related to cardiovascular risk factors in a healthy female population. J Hypertens. 2002;20:1753–7.

    Article  CAS  PubMed  Google Scholar 

  25. Nilsson H, Aalkjaer C. Vasomotion: mechanisms and physiological importance. Mol Interv. 2003;3:79–89.

    Article  CAS  PubMed  Google Scholar 

  26. Ursino M, Cavalcanti S, Bertuglia S, et al. Theoretical analysis of complex oscillations in multibranched microvascular networks. Microvasc Res. 1996;23:229–49.

    Article  Google Scholar 

  27. Parthimos D, Edwards DH, Griffith TM. Comparison of chaotic and sinusoidal vasomotion in the regulation of microvascular flow. Cardiovasc Res. 1996;31:388–99.

    CAS  PubMed  Google Scholar 

  28. Sakurai T, Terui N. Effects of sympathetically induced vasomotion on tissue-capillary fluid exchange. Am J Physiol Heart Circ Physiol. 2006;291:H1761–7.

    Article  CAS  PubMed  Google Scholar 

  29. Soderstrom T, Stefanovska A, Veber M, et al. Involvement of sympathetic nerve activity in skin blood flow oscillation in humans. Am J Physiol Heart Circ Physiol. 2003;284:H1638–46.

    CAS  PubMed  Google Scholar 

  30. Stauss HM, Anderson EA, Haynes WG, et al. Frequency response characteristics of sympathetically mediated vasomotor waves in humans. Am J Physiol. 1998;274:H1277–83.

    CAS  PubMed  Google Scholar 

  31. Lamboley M, Schuster A, Bény JL, et al. Recruitment of smooth muscle cells and arterial vasomotion. Am J Physiol Heart Circ Physiol. 2003;285:H562–9.

    CAS  PubMed  Google Scholar 

  32. Stansberry KB, Shapiro SA, Hill MA, et al. Impaired peripheral vasomotion in diabetes. Diab Care. 1996;19:715–21.

    Article  CAS  Google Scholar 

  33. Kellogg DL. In vivo mechanisms of cutaneous vasodilation and vasoconstriction in humans during thermoregulatory challenges. J Appl Physiol. 2006;100:1709–18.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the Hospital of Pisa for support in the part of this study concerning the laser Doppler flowmetry investigation.

Conflicts of interest

The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco Rossi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rossi, M., Nannipieri, M., Anselmino, M. et al. Skin Vasodilator Function and Vasomotion in Patients with Morbid Obesity: Effects of Gastric Bypass Surgery. OBES SURG 21, 87–94 (2011). https://doi.org/10.1007/s11695-010-0286-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11695-010-0286-9

Keywords

Navigation