Skip to main content

Advertisement

Log in

Mineral Metabolism and Bone Disease after Bariatric Surgery and Ways to Optimize Bone Health

  • Review
  • Published:
Obesity Surgery Aims and scope Submit manuscript

There is no consensus on how to protect the skeleton with adequate supplements in patients who have undergone bariatric operations. The main problem in mineral metabolism is usually related to secondary hyperparathyroidism (2° HPT), often caused by a lack of dietary calcium, magnesium or vitamin D, together with changes in intestinal fermentation, transit time, and resorption surfaces left behind after bariatric operations. After primarily restrictive bariatric surgery, adequate mineral metabolism depends mainly on the active metabolite of vitamin D, whereas after primarily malabsorptive surgery, it depends largely on passive resorption by means of the calcium sensitizing receptor (CaSR). Notably, CaSR-activated calcium transport is coupled to the presence of sufficient magnesium. The current review discusses clinically relevant mechanisms of mineral metabolism and provides recommendations for adequate calcium, magnesium, and vitamin D supplementation. Nevertheless, formal supplementation guidelines are needed in the near future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Ogden CL, Carroll MD, Curtin LR et al. Prevalence of overweight and obesity in the United States, 1999–2004. JAMA 2006; 295: 1549–55.

    Article  PubMed  CAS  Google Scholar 

  2. McTigue K, Larson JC, Valoski A et al. Mortality and cardiac and vascular outcomes in extremely obese women. JAMA 2006; 296: 79–86.

    Article  PubMed  CAS  Google Scholar 

  3. Shapses SA, Riedt CS. Bone, body weight, and weight reduction: what are the concerns? J Nutr 2006; 136: 1453–6.

    PubMed  CAS  Google Scholar 

  4. Mellstrom D, Johansson C, Johnell O et al. Osteoporosis, metabolic aberrations, and increased risk for vertebral fractures after partial gastrectomy. Calcif Tissue Int 1993; 53: 370–7.

    PubMed  CAS  Google Scholar 

  5. van der Voort DJ, Geusens PP, Dinant GJ. A cross-sectional study of postmenopausal women found an association between osteoporosis and past gastric surgery or oral corticosteroids. J Clin Epidemiol 2004; 57: 533–8.

    Article  PubMed  Google Scholar 

  6. Melton LJ 3rd, Crowson CS, Khosla S et al. Fracture risk after surgery for peptic ulcer disease: a population-based cohort study. Bone 1999;25:61–7.

    Article  PubMed  Google Scholar 

  7. Blake M, Fazio V, O’Brien P. Assessment of nutrient intake in association with weight loss after gastric restrictive procedures for morbid obesity. Aust NZ J Surg 1991;61:195–9.

    Article  CAS  Google Scholar 

  8. Maier GW, Kreis ME, Zittel TT et al. Calcium regulation and bone mass loss after total gastrectomy in pigs. Ann Surg 1997; 225: 181–92.

    Article  PubMed  CAS  Google Scholar 

  9. Albright F, Bloomberg E, Smith PH. Postmenopausal osteoporosis. Trans Assoc Am Physicians 1940; 55: 298–305.

    CAS  Google Scholar 

  10. Nordin BE, Peacock M, Crilly RG et al. In: DeLuca, HF, Frost HM, Jee WS et al, eds. Ostoporosis: Recent Advances in Pathogenesis and Treatment. Baltimore: University Park Press, 1981: 359–67.

    Google Scholar 

  11. Takano-Yamamoto T, Rodan GA. Direct effects of 17 beta-estradiol on trabecular bone in ovariectomized rats. Proc Natl Acad Sci USA 1990; 87: 2172–6.

    Article  PubMed  CAS  Google Scholar 

  12. Klinge B, Lehto-Axtelius D, Akerman M et al. Structure of calvaria after gastrectomy. An experimental study in the rat. Scand J Gastroenterol 1995; 30: 952–7.

    Article  PubMed  CAS  Google Scholar 

  13. Surve VV, Andersson N, Alatalo S et al. Does combined gastrectomy and ovariectomy induce greater osteopenia in young female rats than gastrectomy alone? Calcif Tissue Int 2001; 69: 274–80.

    Article  PubMed  CAS  Google Scholar 

  14. Surve VV, Andersson N, Lehto-Axtelius D et al. Comparison of of osteopenia after gastrectomy, ovariectomy and prednisolone treatment in the young female rat. Orthop Scand 2001; 72: 525–32.

    Article  CAS  Google Scholar 

  15. Andersson N, Surve VV, Lehto-Axtelius D et al. Drug-induced prevention of gastrectomy- and ovariectomy-induced osteopaenia in the young female rat. J Endocrinol 2002; 175: 695–703.

    Article  PubMed  CAS  Google Scholar 

  16. Persson P, Gagnemo-Persson R, Chen D et al. Gastrectomy causes bone loss in the rat: is lack of gastric acid responsible? Scand J Gastroenterol 1993; 28: 301–6.

    Article  PubMed  CAS  Google Scholar 

  17. Rumenapf G, Schwille PO, Wagner W et al. Highly selective vagotomy in the rat: effects on bone and mineral metabolism. Scand J Gastroenterol 1994; 29: 232–7.

    Article  PubMed  CAS  Google Scholar 

  18. Rumenapf G, Schwille PO, Erben RG et al. Osteopenia following total gastrectomy in the rat– state of mineral metabolism and bone histomorphometry. Eur Surg Res 1997; 29: 209–21.

    Article  PubMed  CAS  Google Scholar 

  19. Coates PS, Fernstrom JD, Fernstrom MH et al. Gastric bypass surgery for morbid obesity leads to an increase in bone turnover and a decrease in bone mass. J Clin Endocrinol Metab 2004; 89: 1061–5.

    Article  PubMed  CAS  Google Scholar 

  20. Favus MJ. Primer on the Metabolic Bone Diseases and Disorders of Mineral Metabolism, 5th edn. Washington, DC: American Society for Bone and Mineral Research, 2003.

    Google Scholar 

  21. Newbury L, Dolan K, Hatzifotis M et al. Calcium and [25(OH) D3] depletion and elevated parathyroid hormone following biliopancreatic diversion. Obes Surg 2003; 13: 893–5.

    Article  PubMed  Google Scholar 

  22. Bronner F, Pansu D, Stein WD. An analysis of intestinal calcium transport across the rat intestine. Am J Physiol 1986; 250: G561–9.

    PubMed  CAS  Google Scholar 

  23. McCormick CC. Passive diffusion does not play a major role in the absorption of dietary calcium in normal adults. J Nutr 2002;132: 3428–30.

    PubMed  CAS  Google Scholar 

  24. Bronner F, Slepchenko B, Wood RJ et al.The role of passive transport in calcium absorption. J Nutr 2003; 133:1426; author reply 1427.

    PubMed  CAS  Google Scholar 

  25. Slepchenko B, Bronner F. Modeling of transcellular calcium transport in rat duodenum points to the coexistence of two mechanisms of calcium entry. Am J Physiol 2001; 281: C270–81.

    CAS  Google Scholar 

  26. Sheikh MS, Ramirez A, Emmett M et al. Role of [25(OH) D3]-dependent and [25(OH) D3]-independent mechanisms in absorption of food calcium. J Clin Invest 1988; 81: 126–32.

    Article  PubMed  CAS  Google Scholar 

  27. Jacobs MD. Vitamin D deficient states. Pathophysiology and treatment. West J Med 1979; 131: 305–12.

    PubMed  CAS  Google Scholar 

  28. Shimmins J, Smith DA, Aitken M et al.The measurement of calcium absorption using an oral and intravenous tracer. 2. Clinical studies. Calcif Tissue Res 1971; 6: 301–15.

    Article  PubMed  CAS  Google Scholar 

  29. Hoenderop JG, Nilius B, Bindels RJ. Calcium absorption across epithelia. Physiol Rev 2005; 85: 373–422.

    Article  PubMed  CAS  Google Scholar 

  30. Brown EM, Gamba G, Riccardi D et al. Cloning and characterization of an extracellular Ca2+-sensing receptor from bovine parathyroid. Nature 1993; 366: 575–80.

    Article  PubMed  CAS  Google Scholar 

  31. Brown EM, Hebert SC. The First Annual Bayard D. Catherwood Memorial Lecture. Ca2+-receptor-mediated regulation of parathyroid and renal function. Am J Med Sci 1996; 312: 99–109.

    Article  PubMed  CAS  Google Scholar 

  32. Ritchie G, Kerstan D, Dai LJ et al. 1,25(OH)(2)D(3) stimulates Mg2+ uptake into MDCT cells: modulation by extracellular Ca2+ and Mg2+. Am J Physiol Renal Physiol 2001; 280: F868–78.

    PubMed  CAS  Google Scholar 

  33. Pollak MR, Brown EM, Chou Y-HW et al. Mutations in the human Ca2+-sensing receptor gene cause familial hypocalciuric hypercalcemia and neonatal severe hyperparathyroidism. Cel. 199375: 1297–303.

    Article  CAS  Google Scholar 

  34. Pollak MR, Brown EM, Estep H, et al. Autosomal dominant hypocalcemia caused by a Ca2+-sensing receptor gene mutation. Nat Gene 1994; 8: 303–7.

    Article  CAS  Google Scholar 

  35. Nagase T, Murakami T, Tsukada T et al. A family of autosomal dominant hypocalcemia with a positive correlation between serum calcium and magnesium: identification of a novel gain of function mutation (Ser(820)Phe) in the calcium-sensing receptor. J Clin Endocrinol Metab 2002; 87: 2681–7.

    Article  PubMed  CAS  Google Scholar 

  36. Sahota O, Mundey MK, San P et al. Vitamin D insufficiency and the blunted PTH response in established osteoporosis: the role of magnesium deficiency. Osteoporos Int 2006; 17: 1013–21.

    Article  PubMed  CAS  Google Scholar 

  37. Fatemi S, Ryzen E, Flores J et al. Effect of experimental human magnesium depletion on parathyroid hormone secretion and 1,25-dihydroxyvitamin D metabolism. J Clin Endocrinol Metab 1991; 73: 1067–72.

    Article  PubMed  CAS  Google Scholar 

  38. Nightingale J, Woodward JM. Small Bowel and Nutrition Committee of the British Society of Gastroenterology. Guidelines for management of patients with a short bowel. Gut 2006; 55: (Suppl 4): 1–12.

    Google Scholar 

  39. Zurier RB, Campbell RG, Hashim SA et al. Use of medium-chain triglyceride in management of patients with massive resection of the small intestine. N Engl J Med 1966; 274: 490–3.

    Article  PubMed  CAS  Google Scholar 

  40. Jeppesen PB, Mortensen PB. The influence of a preserved colon on the absorption of medium chain fat in patients with small bowel resection. Gut 1998; 43: 478–83.

    Article  PubMed  CAS  Google Scholar 

  41. Goode LR, Brolin RE, Chowdhury HA et al. Bone and gastric bypass surgery: effects of dietary calcium and [25(OH) D3]. Obes Res 2004; 12: 40–7.

    Article  PubMed  CAS  Google Scholar 

  42. Heaney RP. Functional indices of vitamin D status and ramifications of vitamin D deficiency. Am J Clin Nutr 2004; 80: 1706S–9S.

    PubMed  CAS  Google Scholar 

  43. Hathcock JN, Shao A, Vieth R et al. Risk assessment for vitamin D. Am J Clin Nutr 2007; 85: 6–18.

    PubMed  CAS  Google Scholar 

  44. Trang HM, Cole DE, Rubin LA et al. Evidence that vitamin D3 increases serum 25-hydroxyvitamin D more efficiently than does vitamin D2. Am J Clin Nutr 1998; 68: 854–8.

    PubMed  CAS  Google Scholar 

  45. Visser M, Deeg DJ, Puts MT et al. Low serum concentrations of 25-hydroxy[25(OH) D3] in older persons and the risk of nursing home admission. Am J Clin Nutr 2006; 84: 616–22.

    PubMed  CAS  Google Scholar 

  46. Sakhaee K, Bhuket T, Adams-Huet B et al. Metaanalysis of calcium bioavailability: a comparison of calcium citrate with calcium carbonate. Am J Ther 1999;6:313–21.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dave H. Schweitzer MD, PhD.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schweitzer, D.H. Mineral Metabolism and Bone Disease after Bariatric Surgery and Ways to Optimize Bone Health. OBES SURG 17, 1510–1516 (2007). https://doi.org/10.1007/s11695-008-9431-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11695-008-9431-0

Key words

Navigation