Skip to main content
Log in

Recent advances and versatility of MAGE towards industrial applications

  • Review
  • Published:
Systems and Synthetic Biology

Abstract

The genome engineering toolkit has expanded significantly in recent years, allowing us to study the functions of genes in cellular networks and assist in over-production of proteins, drugs, chemicals and biofuels. Multiplex automated genome engineering (MAGE) has been recently developed and gained more scientific interest towards strain engineering. MAGE is a simple, rapid and efficient tool for manipulating genes simultaneously in multiple loci, assigning genetic codes and integrating non-natural amino acids. MAGE can be further expanded towards the engineering of fast, robust and over-producing strains for chemicals, drugs and biofuels at industrial scales.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

aaRS:

Aminoacyl–tRNA synthetase

CAGE:

Conjugative assembly genome engineering

CoS-MAGE:

Coselection MAGE

DXP:

1-Deoxy-d-xylulose-5-phosphate

GRO:

Genomically recoded organism

MAGE:

Multiplex automated genomic engineering

MMR:

Mismatch repair

NSAAs:

Non-standard amino acids

ORF:

Open reading frame

RBS:

Ribosome binding site

RF1:

Release factor 1

References

  • Ausländer S, Fussenegger M (2013) From gene switches to mammalian designer cells: present and future prospects. Trends Biotechnol 31(3):155–168

    Article  PubMed  CAS  Google Scholar 

  • Ausländer S, Ausländer D, Müller M, Wieland M, Fussenegger M (2012) Programmable single-cell mammalian biocomputers. Nature 487(7405):123–127

    PubMed  Google Scholar 

  • Bayer TS, Smolke CD (2005) Programmable ligand-controlled riboregulators of eukaryotic gene expression. Nat Biotechnol 23(3):337–343

    Article  PubMed  CAS  Google Scholar 

  • Bonde MT, Kosuri S, Genee HJ, Sarup-Lytzen K, Church GM, Sommer MO, Wang HH (2015) Direct mutagenesis of thousands of genomic targets using microarray-derived oligonucleotides. ACS Synth Biol 4(1):17–22

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Callura JM, Dwyer DJ, Isaacs FJ, Cantor CR, Collins JJ (2010) Tracking, tuning, and terminating microbial physiology using synthetic riboregulators. Proc Natl Acad Sci USA 107(36):15898–15903

    Article  PubMed  PubMed Central  Google Scholar 

  • Carr PA, Wang HH, Sterling B, Isaacs FJ, Lajoie MJ, Xu G, Church GM, Jacobson JM (2012) Enhanced multiplex genome engineering through co-operative oligonucleotide co-selection. Nucleic Acids Res 40(17):e132

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chen YY, Jensen MC, Smolke CD (2010) Genetic control of mammalian T-cell proliferation with synthetic RNA regulatory systems. Proc Natl Acad Sci USA 107:8531–8536

    Article  PubMed  PubMed Central  Google Scholar 

  • Costantino N, Court DL (2003) Enhanced levels of λ Red-mediated recombinants in mismatch repair mutants. Proc Natl Acad Sci USA 100:15748–15753

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Culler SJ, Hoff KG, Smolke CD (2010) Reprogramming cellular behavior with RNA controllers responsive to endogenous proteins. Science 330:1251–1255

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Datta S, Costantino N, Zhou X, Court DL (2008) Identification and analysis of recombineering functions from Gram-negative and Gram-positive bacteria and their phages. Proc Natl Acad Sci USA 105:1626–1631

    Article  PubMed  PubMed Central  Google Scholar 

  • Edwards AL, Reyes FE, Héroux A, Batey RT (2010) Structural basis for recognition of S-adenosylhomocysteine by riboswitches. RNA 16(11):2144–2155

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ellis HM, Yu D, DiTizio T, Court DL (2001) High efficiency mutagenesis, repair, and engineering of chromosomal DNA using single-stranded oligonucleotides. Proc Natl Acad Sci USA 98(12):6742–6746

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Elowitz MB, Leibler S (2000) A synthetic oscillatory network of transcriptional regulators. Nature 403(6767):335–338

    Article  PubMed  CAS  Google Scholar 

  • Esvelt KM, Wang HH (2013) Genome-scale engineering for systems and synthetic biology. Mol Syst Biol 9:641

    Article  PubMed  PubMed Central  Google Scholar 

  • Gibson DG, Young L, Chuang RY, Venter JC, Hutchison CA 3rd, Smith HO (2009) Enzymatic assembly of DNA molecules up to several hundred kilobases. Nat Methods 6(5):343–345

    Article  PubMed  CAS  Google Scholar 

  • Gibson DG, Glass JI, Lartigue C, Noskov VN, Chuang RY, Algire MA, Benders GA, Montague MG, Ma L, Moodie MM, Merryman C, Vashee S, Krishnakumar R, Assad-Garcia N, Andrews-Pfannkoch C, Denisova EA, Young L, Qi ZQ, Segall-Shapiro TH, Calvey CH, Parmar PP, Hutchison CA 3rd, Smith HO, Venter JC (2010) Creation of a bacterial cell controlled by a chemically synthesized genome. Science 329(5987):52–56

    Article  PubMed  CAS  Google Scholar 

  • Green AA, Silver PA, Collins JJ, Yin P (2014) Toehold switches: de-novo-designed regulators of gene expression. Cell 159(4):925–939

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Haimovich AD, Muir P, Isaacs FJ (2015) Genomes by design. Nat Rev Genet 16(9):501–516

    Article  PubMed  CAS  Google Scholar 

  • Isaacs FJ, Carr PA, Wang HH, Lajoie MJ, Sterling B, Kraal L, Tolonen AC, Gianoulis TA, Goodman DB, Reppas NB, Emig CJ, Bang D, Hwang SJ, Jewett MC, Jacobson JM, Church GM (2011) Precise manipulation of chromosomes in vivo enables genome-wide codon replacement. Science 333(6040):348–353

    Article  PubMed  CAS  Google Scholar 

  • Jeong J, Cho N, Jung D, Bang D (2013) Genome-scale genetic engineering in Escherichia coli. Biotechnol Adv 31(6):804–810

    Article  PubMed  CAS  Google Scholar 

  • Karakousis G, Ye N, Li Z, Chiu SK, Reddy G, Radding CM (1998) The beta protein of phage lambda binds preferentially to an intermediate in DNA renaturation. J Mol Biol 276:721–731

    Article  PubMed  CAS  Google Scholar 

  • Kemmer C, Fluri DA, Witschi U, Passeraub A, Gutzwiller A, Fussenegger M (2011) A designer network coordinating bovine artificial insemination by ovulation-triggered release of implanted sperms. J Control Release 150:23–29

    Article  PubMed  CAS  Google Scholar 

  • Khalil AS, Collins JJ (2010) Synthetic biology: applications come of age. Nat Rev Genet 11(5):367–379

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kim H, Han H, Ahn J, Lee J, Cho N, Jang H, Kim H, Kwon S, Bang D (2012) Shotgun DNA synthesis’ for the high throughput construction of large DNA molecules. Nucleic Acids Res 40:e140

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Klauser B, Hartig JS (2013) An engineered small RNA-mediated genetic switch based on a ribozyme expression platform. Nucleic Acids Res 41(10):5542–5552

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kosuri S, Eroshenko N, Leproust EM, Super M, Way J, Li JB, Church GM (2010) Scalable gene synthesis by selective amplification of DNA pools from high-fidelity microchips. Nat Biotechnol 28:1295–1299

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lajoie MJ, Rovner AJ, Goodman DB, Aerni HR, Haimovich AD, Kuznetsov G, Mercer JA, Wang HH, Carr PA, Mosberg JA, Rohland N, Schultz PG, Jacobson JM, Rinehart J, Church GM, Isaacs FJ (2013) Genomically recoded organisms expand biological functions. Science 342(6156):357–360

    Article  PubMed  CAS  Google Scholar 

  • Lartigue C, Vashee S, Algire MA, Chuang RY, Benders GA, Ma L, Noskov VN, Denisova EA, Gibson DG, Assad-Garcia N, Alperovich N, Thomas DW, Merryman C, Hutchison CA 3rd, Smith HO, Venter JC, Glass JI (2009) Creating bacterial strains from genomes that have been cloned and engineered in yeast. Science 325:1693–1696

    Article  PubMed  CAS  Google Scholar 

  • Mondragón-Palomino O, Danino T, Selimkhanov J, Tsimring L, Hasty J (2011) Entrainment of a population of synthetic genetic oscillators. Science 333(6047):1315–1319

    Article  PubMed  CAS  Google Scholar 

  • Moon TS, Lou C, Tamsir A, Stanton BC, Voigt CA (2012) Genetic programs constructed from layered logic gates in single cells. Nature 491(7423):249–253

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Na D, Yoo SM, Chung H, Park H, Park JH, Lee SY (2013) Metabolic engineering of Escherichia coli using synthetic small regulatory RNAs. Nat Biotechnol 31(2):170–174

    Article  PubMed  CAS  Google Scholar 

  • Nissim L, Bar-Ziv RH (2010) A tunable dual-promoter integrator for targeting of cancer cells. Mol Syst Biol 6:444

    Article  PubMed  PubMed Central  Google Scholar 

  • Purnick PE, Weiss R (2009) The second wave of synthetic biology: from modules to systems. Nat Rev Mol Cell Biol 10(6):410–422

    Article  PubMed  CAS  Google Scholar 

  • Rovner AJ, Haimovich AD, Katz SR, Li Z, Grome MW, Gassaway BM, Amiram M, Patel JR, Gallagher RR, Rinehart J, Isaacs FJ (2015) Recoded organisms engineered to depend on synthetic amino acids. Nature 518(7537):89–93

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ryu YS, Biswas RK, Shin K, Parisutham V, Kim SM, Lee SK (2014) A simple and effective method for construction of Escherichia coli strains proficient for genome engineering. PLoS ONE 9(4):e94266

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sharan SK, Thomason LC, Kuznetsov SG, Court DL (2009) Recombineering: a homologous recombination-based method of genetic engineering. Nat Protoc 4:206–223

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Shimizu Y, Ueda T (2010) PURE technology. Methods Mol Biol 607:11–21

    Article  PubMed  CAS  Google Scholar 

  • Singh V (2014) Recent advancements in synthetic biology: current status and challenges. Gene 535(1):1–11

    Article  PubMed  CAS  Google Scholar 

  • Soma Y, Tsuruno K, Wada M, Yokota A, Hanai T (2014) Metabolic flux redirection from a central metabolic pathway toward a synthetic pathway using a metabolic toggle switch. Metab Eng 23:175–184

    Article  PubMed  CAS  Google Scholar 

  • Stricker J, Cookson S, Bennett MR, Mather WH, Tsimring LS, Hasty J (2008) A fast, robust and tunable synthetic gene oscillator. Nature 456(7221):516–519

    Article  PubMed  CAS  Google Scholar 

  • Tamsir A, Tabor JJ, Voigt CA (2011) Robust multicellular computing using genetically encoded NOR gates and chemical ‘wires’. Nature 469:212–215

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tigges M, Marquez-Lago TT, Stelling J, Fussenegger M (2009) A tunable synthetic mammalian oscillator. Nature 457:309–312

    Article  PubMed  CAS  Google Scholar 

  • Wang HH, Church GM (2011) Multiplexed genome engineering and genotyping methods applications for synthetic biology and metabolic engineering. Methods Enzymol 498:409–426

    Article  PubMed  CAS  Google Scholar 

  • Wang JX, Lee ER, Morales DR, Lim J, Breaker RR (2008) Riboswitches that sense S-adenosylhomocysteine and activate genes involved in coenzyme recycling. Mol Cell 29(6):691–702

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wang HH, Isaacs FJ, Carr PA, Sun ZZ, Xu G, Forest CR, Church GM (2009) Programming cells by multiplex genome engineering and accelerated evolution. Nature 460(7257):894–898

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wang HH, Kim H, Cong L, Jeong J, Bang D, Church GM (2012a) Genome-scale promoter engineering by coselection MAGE. Nat Methods 9:591–593

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wang HH, Huang PY, Xu G, Haas W, Marblestone A, Li J, Gygi SP, Forster AC, Jewett MC, Church GM (2012b) Multiplexed in vivo His-tagging of enzyme pathways for in vitro single-pot multienzyme catalysis. ACS Synth Biol 1(2):43–52

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ye H, Daoud-El Baba M, Peng RW, Fussenegger M (2011) A synthetic optogenetic transcription device enhances blood-glucose homeostasis in mice. Science 332:1565–1568

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank D.K. Chaudhary and S. Prakash for their fruitful discussion and suggestion for the improvement of the manuscript. The authors also appreciate anonymous reviewers of the journal for their valuable comments and suggestions to improve the quality of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vijai Singh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, V., Braddick, D. Recent advances and versatility of MAGE towards industrial applications. Syst Synth Biol 9 (Suppl 1), 1–9 (2015). https://doi.org/10.1007/s11693-015-9184-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11693-015-9184-8

Keywords

Navigation