Skip to main content
Log in

A conceptual review on systems biology in health and diseases: from biological networks to modern therapeutics

  • Research Article
  • Published:
Systems and Synthetic Biology

Abstract

Human physiology is an ensemble of various biological processes spanning from intracellular molecular interactions to the whole body phenotypic response. Systems biology endures to decipher these multi-scale biological networks and bridge the link between genotype to phenotype. The structure and dynamic properties of these networks are responsible for controlling and deciding the phenotypic state of a cell. Several cells and various tissues coordinate together to generate an organ level response which further regulates the ultimate physiological state. The overall network embeds a hierarchical regulatory structure, which when unusually perturbed can lead to undesirable physiological state termed as disease. Here, we treat a disease diagnosis problem analogous to a fault diagnosis problem in engineering systems. Accordingly we review the application of engineering methodologies to address human diseases from systems biological perspective. The review highlights potential networks and modeling approaches used for analyzing human diseases. The application of such analysis is illustrated in the case of cancer and diabetes. We put forth a concept of cell-to-human framework comprising of five modules (data mining, networking, modeling, experimental and validation) for addressing human physiology and diseases based on a paradigm of system level analysis. The review overtly emphasizes on the importance of multi-scale biological networks and subsequent modeling and analysis for drug target identification and designing efficient therapies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Alon U (2003) Biological networks: the tinkerer as an engineer. Science 301(5641):1866–1867

    CAS  PubMed  Google Scholar 

  • Alon U (2007) Network motifs: theory and experimental approaches. Nat Rev Genet 8:450–461

    CAS  PubMed  Google Scholar 

  • Andasari V, Gerisch A, Lolas G, South A, Chaplain MJ (2011) Mathematical modeling of cancer cell invasion of tissue: biological insight from mathematical analysis and computational simulation. J Math Biol 63(1):141–171

    PubMed  Google Scholar 

  • Arrell DK, Terzic A (2010) Network systems biology for drug discovery. Clin Pharmacol Ther 88(1):120–125

    CAS  PubMed  Google Scholar 

  • Azmi AS, Wang Z, Philip PA, Mohammad RM, Sarkar FH (2010) Proof of concept: network and systems biology approaches aid in the discovery of potent anticancer drug combinations. Mol Cancer Ther 9(12):3137–3144

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bajikar S, Janes K (2012) Multiscale models of cell signaling. Ann Biomed Eng 40(11):2319–2327

    PubMed Central  PubMed  Google Scholar 

  • Barabási A-L (2007) Network medicine—from obesity to the “diseasome”. N Engl J Med 357(4):404–407

    PubMed  Google Scholar 

  • Barkai N, Leibler S (1997) Robustness in simple biochemical networks. Nature 387(6636):913–917

    CAS  PubMed  Google Scholar 

  • Bauer-Mehren A, Furlong LI, Sanz F (2009). Pathway databases and tools for their exploitation: benefits, current limitations and challenges. Mol Syst Biol 5(Article number 290)

  • Becker S, Feist A, Mo M, Hannum G, Palsson B, Herrgard M (2007) Quantitative prediction of cellular metabolism with constraint-based models: the COBRA Toolbox. Nat Protoc 2:727–738

    CAS  PubMed  Google Scholar 

  • Bergman RN (1997) The minimal model: yesterday, today and tomorrow. In: Bergman RN, Lovejoy JC (eds) The minimal model approach and determination of glucose tolerance. LSU Press, Baton Rouge, pp 3–50

    Google Scholar 

  • Bergman RN (2001) The minimal model of glucose regulation: a biography. In: Novotny J, Green M, Boston R (eds) Mathematical modeling in nutrition and health. Kluwer Academic/Plenum, Dordrecht/New York

  • Bertoletti A, Maini MK, Ferrari C (2010) The host–pathogen interaction during HBV infection: immunological controversies. Antivir Ther 15(3):15–24

    CAS  PubMed  Google Scholar 

  • Bhalla US, Iyengar R (1999) Emergent properties of networks of biological signaling pathways. Science 283(5400):381–387

    CAS  PubMed  Google Scholar 

  • Bhat PJ, Darunte L, Kareenhalli V, Dandekar J, Kumar A (2011) Can metabolic plasticity be a cause for cancer? Warburg–Waddington legacy revisited. Clin Epigenet 2:113–122

    CAS  Google Scholar 

  • Bogle IDL, Allen R, Sumner T (2010) The role of computer aided process engineering in physiology and clinical medicine. Comput Chem Eng 34(5):763–769

    CAS  Google Scholar 

  • Botstein D, White RL, Skolnick M, Davis RW (1980) Construction of a genetic linkage map in man using restriction fragment length polymorphisms. Am J Hum Genet 32(3):314–331

    CAS  PubMed Central  PubMed  Google Scholar 

  • Brandman O, Ferrell JE Jr, Li R, Meyer T (2005) Interlinked fast and slow positive feedback loops drive reliable cell decisions. Science 310(5747):496–498

    CAS  PubMed Central  PubMed  Google Scholar 

  • Butcher EC, Berg EL, Kunkel EJ (2004) Systems biology in drug discovery. Nat Biotechnol 22(10):1253–1259

    CAS  PubMed  Google Scholar 

  • Butler D (1999) Computing 2010: from black holes to biology. Nature 402(6761 Suppl):C67–C70

    Google Scholar 

  • Chan P, Holford N (2001) Drug treatment effects on disease progression. Annu Rev Pharmacol Toxicol 41(1):625–659

    CAS  PubMed  Google Scholar 

  • Chandra N (2009) Computational systems approach for drug target discovery. Expert Opin Drug Discov 4(12):1221–1236

    CAS  PubMed  Google Scholar 

  • Chautard E, Thierry-Mieg N, Ricard-Blum S (2009) Interaction networks: from protein functions to drug discovery. A review. Pathol Biol (Paris) 57(4):324–333

    CAS  Google Scholar 

  • Chen C-L, Tsai H-W, Wong S–S (2010a) Modeling the physiological glucose-insulin dynamic system on diabetics. J Theor Biol 265(3):314–322

    CAS  PubMed  Google Scholar 

  • Chen Q, Wang Z, Wei D (2010b) Progress in the applications of flux analysis of metabolic networks. Chin Sci Bull 55(22):2315–2322

    CAS  Google Scholar 

  • Chen Y, Zhang W, Gan M, Jiang R (2012) Constructing human phenome-interactome networks for the prioritization of candidate gene. Stat Interface 5:137–148

    Google Scholar 

  • Cheng TMK, Gulati S, Agius R, Bates PA (2012) Understanding cancer mechanisms through network dynamics. Briefings Funct Genomics 11(6):543–560

    CAS  Google Scholar 

  • Chew YH, Shia YL, Lee CT, Majid FAA, Chua LS, Sarmidi MR, Aziz AR (2009) Modeling of glucose regulation and insulin-signaling pathways. Mol Cell Endocrinol 303:13–24

    Google Scholar 

  • Cho CR, Labow M, Reinhardt M, van Oostrum J, Peitsch MC (2006) The application of systems biology to drug discovery. Curr Opin Chem Biol 10(4):294–302

    CAS  PubMed  Google Scholar 

  • Cho B-K, Charusanti P, Herrgård MJ, Palsson B (2007) Microbial regulatory and metabolic networks. Curr Opin Biotechnol 18(4):360–364

    CAS  PubMed  Google Scholar 

  • Cloutier M, Wang E (2011) Dynamic modeling and analysis of cancer cellular network motifs. Integr Biol 3(7):724–732

    CAS  Google Scholar 

  • Comen E, Morris P, Norton L (2012) Translating mathematical modeling of tumor growth patterns into novel therapeutic approaches for breast cancer. J Mammary Gland Biol Neoplasia 17(3–4):241–249

    PubMed  Google Scholar 

  • Csete ME, Doyle JC (2002) Reverse engineering of biological complexity. Science 295(5560):1664–1669

    CAS  PubMed  Google Scholar 

  • Cuccato G, Gatta GD, di Bernardo D (2009) Systems and synthetic biology: tackling genetic networks and complex diseases. Heredity 102(6):527–532

    CAS  PubMed  Google Scholar 

  • Dalla Man C, Rizza RA (2007) Meal simulation model of the glucose–insulin system. IEEE Trans Biomed Eng 54:10

    Google Scholar 

  • De Gaetano A, Hardy T, Beck B, Abu-Raddad E, Palumbo P, Bue-Valleskey J, Porksen N (2008) Mathematical models of diabetes progression. Am J Physiol Endocrinol Metab 295(6):E1462–E1479

    PubMed  Google Scholar 

  • de Graaf AA, Freidig AP, De Roos B, Jamshidi N, Heinemann M, Rullmann JAC, Hall KD, Adiels M, van Ommen B (2009) Nutritional systems biology modeling: from molecular mechanisms to physiology. PLoS Comput Biol 5(11):e1000554

    PubMed Central  PubMed  Google Scholar 

  • Deisboeck TS, Wang Z, Macklin P, Cristini V (2011) Multiscale cancer modeling. Annu Rev Biomed Eng 13(1):127–155

    CAS  PubMed  Google Scholar 

  • del Sol A, Balling R, Hood L, Galas D (2010) Diseases as network perturbations. Curr Opin Biotechnol 21:566–571

    PubMed  Google Scholar 

  • Duda DG, Munn LL, Jain RK (2013) Can we identify predictive biomarkers for antiangiogenic therapy of cancer using mathematical modeling? J Natl Cancer Inst 105(11):762–765

    PubMed  Google Scholar 

  • Duffy BC, Zhu L, Decornez H, Kitchen DB (2012) Early phase drug discovery: cheminformatics and computational techniques in identifying lead series. Bioorg Med Chem 20(18):5324–5342

    CAS  PubMed  Google Scholar 

  • Dunker AK, Lawson JD, Brown CJ et al (2001) Intrinsically disordered protein. J Mol Graph Model 19:26–59

    CAS  PubMed  Google Scholar 

  • Edelman LB, Eddy JA, Price ND (2010) In silico models of cancer. Wiley Interdiscip Rev Syst Biol Med 2(4):438–459

    CAS  PubMed Central  PubMed  Google Scholar 

  • Eissing T, Kuepfer L, Becker C, Block M, Coboeken K et al (2011) A computational systems biology software platform for multiscale modeling and simulation: integrating whole-body physiology, disease biology, and molecular reaction networks. Front Physiol 2(4):1–10

    Google Scholar 

  • Erler JT, Linding R (2010) Network-based drugs and biomarkers. J Pathol 220(2):290–296

    CAS  PubMed  Google Scholar 

  • Ferrell JE (2002) Self-perpetuating states in signal transduction: positive feedback, double-negative feedback and bistability. Curr Opin Cell Biol 14(2):140–148

    CAS  PubMed  Google Scholar 

  • Folger O, Jerby L, Frezza C, Gottlieb E, Ruppin E, Shlomi T (2011) Predicting selective drug targets in cancer through metabolic networks. Mol Syst Biol 7(501):1–10

    Google Scholar 

  • Ge H, Walhout AJM, Vidal M (2003) Integrating ‘omic’ information: a bridge between genomics and systems biology. Trends Genet 19(10):551–560

    CAS  PubMed  Google Scholar 

  • Gehlenborg N, O’Donoghue SI, Baliga NS et al (2010) Visualization of omics data for systems biology. Nat Methods 7(3s):S56–S68

    Google Scholar 

  • Ghosh S, Young DL, Gadkar KG, Wennerberg L, Basu K (2007) Towards optimal virtual patients: an online adaptive control approach. Engineering in Medicine and Biology Society, 2007. EMBS 2007. In: 29th Annual international conference of the IEEE

  • Giri L, Mutalik V, Venkatesh K (2004) A steady state analysis indicates that negative feedback regulation of PTP1B by Akt elicits bistability in insulin-stimulated GLUT4 translocation. Theor Biol Med Model 1(1):2

    PubMed Central  PubMed  Google Scholar 

  • Goh K-I, Cusick ME, Valle D, Childs B, Vidal M, Barabasi A-L (2007) The human disease network. PNAS 104(21):8685–8690

    CAS  PubMed  Google Scholar 

  • Hageman BR, Trichler DL, Gaile DP (2012) Mathematical and statistical modeling in cancer systems biology. Front Physiol 3(227):1–8

    Google Scholar 

  • Hamosh A, Scott AF, Amberger JS, Bocchini CA, McKusick VA (2005) Online Mendelian inheritance in man (OMIM), a knowledgebase of human genes and genetic disorders. Nucleic Acids Res 33(suppl 1):D514–D517

    CAS  PubMed Central  PubMed  Google Scholar 

  • Handorf T, Klipp E (2012) Modeling mechanistic biological networks: an advanced Boolean approach. Bioinformatics 28(4):557–563

    CAS  PubMed  Google Scholar 

  • Hartwell LH, Hopfield JJ, Leibler S, Murray AW (1999) From molecular to modular cell biology. Nature 402:C47–C52

    Google Scholar 

  • Hase T, Tanaka H, Suzuki Y, Nakagawa S, Kitano H (2009) Structure of protein interaction networks and their implications on drug design. PLoS Comput Biol 5(10):e1000550

    PubMed Central  PubMed  Google Scholar 

  • Heiner M, Gilbert D (2013) BioModel engineering for multiscale systems biology. Prog Biophys Mol Biol 111(2–3):119–128

    PubMed  Google Scholar 

  • Herrgård MJ, Covert MW, Palsson BØ (2004) Reconstruction of microbial transcriptional regulatory networks. Curr Opin Biotechnol 15(1):70–77

    PubMed  Google Scholar 

  • Houtman JCD, Barda-Saad M, Samelson LE (2005) Examining multiprotein signaling complexes from all angles. FEBS J 272(21):5426–5435

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hunter P, Smith N, Fernandez J, Tawhai M (2005) Integration from proteins to organs: the IUPS physiome project. Mech Ageing Dev 126(1):187–192

    CAS  PubMed  Google Scholar 

  • Hunter P, Chapman T, Coveney PV et al (2013) A vision and strategy for the virtual physiological human: 2012 update. Interface Focus 3(2):2042–8901

    Google Scholar 

  • Imms R, Warburton C, Summers R (2011) Engineering biology: model conceptualisation and realisation. Meas Control 44(6):175–179

    Google Scholar 

  • Janes KA, Yaffe MB (2006) Data-driven modelling of signal-transduction networks. Nat Rev Mol Cell Biol 7(11):820–828

    CAS  PubMed  Google Scholar 

  • Jordán F, Nguyen TP, Liu W (2012) Studying protein–protein interaction networks: a systems view on diseases. Briefings Funct Genomics 11(6):497–504

    Google Scholar 

  • Jørgensen C, Linding R (2008) Directional and quantitative phosphorylation networks. Briefings Funct Genomics Proteomics 7(1):17–26

    Google Scholar 

  • Kahraman A, Avramov A, Nashev LG et al (2005) PhenomicDB: a multi-species genotype/phenotype database for comparative phenomics. Bioinformatics 21:418–420

    CAS  PubMed  Google Scholar 

  • Kann MG (2007) Protein interactions and disease: computational approaches to uncover the etiology of diseases. Briefings Bioinform 8(5):333–346

    CAS  Google Scholar 

  • Karp PD, Ouzounis CA, Moore-Kochlacs C, Goldovsky L et al (2005) Expansion of the BioCyc collection of pathway/genome databases to 160 genomes. Nucleic Acids Res 33(19):6083–6089

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kholodenko BN (2006) Cell-signalling dynamics in time and space. Nat Rev Mol Cell Biol 7(3):165–176

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kholodenko BN, Kiyatkin A, Bruggeman F, Sontag E, Westerhoff HV, Hoek JB (2002) Untangling the wires: a strategy to trace functional interactions in signaling and gene networks. Proc Natl Acad Sci 99(20):12841–12846

    Google Scholar 

  • Kholodenko B, Yaffe MB, Kolch W (2012) Computational approaches for analyzing information flow in biological networks. Sci Signal 5(220):re1

    PubMed  Google Scholar 

  • Kim J, Saidel G, Cabrera M (2007) Multi-scale computational model of fuel homeostasis during exercise: effect of hormonal control. Ann Biomed Eng 35(1):69–90

    PubMed  Google Scholar 

  • Kim TY, Kim HU, Lee SY (2010) Data integration and analysis of biological networks. Curr Opin Biotechnol 21(1):78–84

    CAS  PubMed  Google Scholar 

  • Kim HU, Sohn SB, Lee SY (2012) Metabolic network modeling and simulation for drug targeting and discovery. Biotechnol J 7(3):330–342

    CAS  PubMed  Google Scholar 

  • Kirouac DC, Ito C, Csaszar E, Roch A, Yu M, Sykes EA, Bader GD, Zandstra PW (2010) Dynamic interaction networks in a hierarchically organized tissue. Mol Syst Biol 6(417):1–17

    Google Scholar 

  • Kitano H (2002a) Computational systems biology. Nature 420(6912):206–210

    Google Scholar 

  • Kitano H (2002b) Systems biology: A brief overview. Science 295(5560):1662–1664

    Google Scholar 

  • Kitano H (2007) Towards a theory of biological robustness. Mol Syst Biol 3(137):1–7

    Google Scholar 

  • Kitano H, Oda K, Kimura T, Matsuoka Y, Csete M, Doyle J, Muramatsu M (2004) Metabolic syndrome and robustness tradeoffs. Diabetes 53(suppl 3):S6–S15

    CAS  PubMed  Google Scholar 

  • Klinke D (2008) Integrating epidemiological data into a mechanistic model of type 2 diabetes: validating the prevalence of virtual patients. Ann Biomed Eng 36(2):321–334

    PubMed  Google Scholar 

  • Klipp E, Wade RC, Kummer U (2010) Biochemical network-based drug-target prediction. Curr Opin Biotechnol 21(4):511–516

    CAS  PubMed  Google Scholar 

  • Kolodkin A, Boogerd FC, Plant N, Bruggeman FJ, Goncharuk V et al (2012) Emergence of the silicon human and network targeting drugs. Eur J Pharm Sci 46(4):190–197

    CAS  PubMed  Google Scholar 

  • Koschorreck M, Conzelmann H, Ebert S, Ederer M, Gilles E (2007) Reduced modeling of signal transduction—a modular approach. BMC Bioinformatics 8(1):336

    PubMed Central  PubMed  Google Scholar 

  • Koshiyama H, Ogawa Y, Tanaka K, Tanaka I (2010) Integrated network systems and evolutionary developmental endocrinology. Med Hypotheses 74(1):132–138

    CAS  PubMed  Google Scholar 

  • Koster ES, Rodin AS, Raaijmakers JA, Maitland-vander Zee A-H (2009) Systems biology in pharmacogenomic research: the way to personalized prescribing? Pharmacogenomics 10(6):971–981

    PubMed  Google Scholar 

  • Koyutürk M (2010) Algorithmic and analytical methods in network biology. Wiley Interdiscip Rev Syst Biol Med 2(3):277–292

    PubMed Central  PubMed  Google Scholar 

  • Kumar N, Hendriks BS, Janes KA, de Graaf D, Lauffenburger DA (2006) Applying computational modeling to drug discovery and development. Drug Discovery Today 11(17–18):806–811

    CAS  PubMed  Google Scholar 

  • Lage K, Karlberg EO, Storling ZM, Olason PI, Pedersen AG, Rigina O, Hinsby AM, Tumer Z, Pociot F, Tommerup N, Moreau Y, Brunak S (2007) A human phenome-interactome network of protein complexes implicated in genetic disorders. Nat Biotechnol 25(3):309–316

    CAS  PubMed  Google Scholar 

  • Langley SR, Dwyer J, Drozdov I, Yin X, Mayr M (2013) Proteomics: from single molecules to biological pathways. Cardiovasc Res 97(4):612–622

    CAS  PubMed  Google Scholar 

  • Le Novère N, Bornstein B, Broicher A, Courtot M, Donizelli M, Dharuri H, Li L, Sauro H, Schilstra M, Shapiro B, Snoep JL, Hucka M (2006) BioModels Database: a free, centralized database of curated, published, quantitative kinetic models of biochemical and cellular systems. Nucleic Acids Res 34(Database issue):D689–D691

  • Lesko L, Atkinson A (2001) Use of biomarkers and surrogate endpoints in drug development and regulatory decision making: criteria, validation, strategies. Annu Rev Pharmacol Toxicol 41(1):347–366

    CAS  PubMed  Google Scholar 

  • Liu B, Thagrajan PS (2012) Modeling and analysis of biopathways dynamics. J Bioinform Comput Biol 10(04):1231001

    PubMed  Google Scholar 

  • Liu W, Hsin CC, Tang F (2009) A molecular mathematical model of glucose mobilization and uptake. Math Biosci 221:121–129

    Google Scholar 

  • Maayan A (2011) Introduction to network analysis in systems biology. Sci Signal 4(190):tr5, 1–11

    Google Scholar 

  • Macé G, Bogliolo M, Guervilly J-H, Dugas du Villard JA, Rosselli F (2005) 3R coordination by Fanconi anemia proteins. Biochimie 87(7):647–658

    PubMed  Google Scholar 

  • Makroglou A, Li J, Kuang Y (2006) Mathematical models and software tools for the glucose-insulin regulatory system and diabetes: an overview. Appl Numer Math 56:559–573

    Google Scholar 

  • Mardinoglu A, Nielsen J (2012) Systems medicine and metabolic modelling. J Intern Med 271(2):142–154

    CAS  PubMed  Google Scholar 

  • Mayer B (1999) Protein–protein interactions in signaling cascades. Mol Biotechnol 13(3):201–213

    CAS  PubMed  Google Scholar 

  • Meeting H (2007) Computer modeling of diabetes and its complications. Diabetes Care 30(6):1638–1646

    Google Scholar 

  • Menolascina F, Siciliano V, di Bernardo D (2012) Engineering and control of biological systems: a new way to tackle complex diseases. FEBS Lett 586(15):2122–2128

    CAS  PubMed  Google Scholar 

  • Milo R, Shen-Orr S, Itzkovitz S, Kashtan N, Chklovskii D, Alon U (2002) Network motifs: simple building blocks of complex networks. Science 298:824–827

    CAS  PubMed  Google Scholar 

  • Miyatsuka H, Matsuoka T, Kaneto H (2008) Transcription factors as therapeutic targets for diabetes. Expert Opin Ther Targets 12(11):1431–1442

    CAS  PubMed  Google Scholar 

  • Mizushima T (2012) Identification of molecular mechanism for actions of existing medicines and its application for drug development. Yakugaku Zasshi 132(6):713–720

    CAS  PubMed  Google Scholar 

  • Moller DE (2001) New drug targets for type 2 diabetes and the metabolic syndrome. Nature 414(6865):821–827

    CAS  PubMed  Google Scholar 

  • Moreno-Sánchez R, Saavedra E, Rodríguez-Enríquez S, Olín-Sandoval V (2008) Metabolic control analysis: a tool for designing strategies to manipulate metabolic pathways. J Biomed Biotechnol (Article ID 597913):30

  • Neduva V, Russell RB (2006) Peptides mediating interaction networks: new leads at last. Curr Opin Biotechnol 17(5):465–471

    CAS  PubMed  Google Scholar 

  • Nielsen J (2012) Translational and systems medicine. J Intern Med 271(2):108–110

    CAS  PubMed  Google Scholar 

  • Oberhardt M, Palsson B, Papin J (2009) Applications of genome-scale metabolic reconstructions. Mol Syst Biol 5(320):1–15

    Google Scholar 

  • Ogata H, Goto S, Sato K, Fujibuchi W, Bono H, Kanehisa M (1999) KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res 27(1):29–34

    CAS  PubMed Central  PubMed  Google Scholar 

  • Orth J, Thiele I, Palsson B (2010) What is flux balance analysis? Nat Biotechnol 28:245–248

    CAS  PubMed Central  PubMed  Google Scholar 

  • Papin JA, Hunter T, Palsson BO, Subramaniam S (2005) Reconstruction of cellular signalling networks and analysis of their properties. Nat Rev Mol Cell Biol 6(2):99–111

    CAS  PubMed  Google Scholar 

  • Park J, Lee D-S, Christakis N, Barabasi A-L (2009) The impact of cellular networks on disease comorbidity. Mol Syst Biol 5:262

    PubMed Central  PubMed  Google Scholar 

  • Pattaranit R, van den Berg HA (2008) Mathematical models of energy homeostasis. J R Soc Interface 5(27):1119–1135

    PubMed Central  PubMed  Google Scholar 

  • Perez-Iratxeta C, Bork P, Andrade MA (2002) Association of genes to genetically inherited diseases using data mining. Nat Genet 31(3):316–319

    CAS  PubMed  Google Scholar 

  • Pfau T, Christian N, Ebenhöh O (2011) Systems approaches to modelling pathways and networks. Briefings Funct Genomics 10(5):266–279

    Google Scholar 

  • Post TM, Freijer JI, DeJongh J, Danhof M (2005) Disease system analysis: basic disease progression models in degenerative disease. Pharm Res 22(7):1038–1049

    CAS  PubMed  Google Scholar 

  • Przytycka T, Kim Y-A (2010) Network integration meets network dynamics. BMC Biol 8(1):48

    PubMed Central  PubMed  Google Scholar 

  • Pujol A, Farre J, Aloy P (2010) Unveiling the role of network and systems biology in drug discovery. Trends Pharmacol Sci 31(3):115–123

    Google Scholar 

  • Qi Y, Ge H (2006) Modularity and dynamics of cellular networks. PLoS Comput Biol 2(12):e174

    PubMed Central  PubMed  Google Scholar 

  • Rao CV, Arkin AP (2001) Control motifs for intracellular regulatory networks. Annu Rev Biomed Eng 3(1):391–419

    CAS  PubMed  Google Scholar 

  • Rees SE, Carson ER, Feng DD, Andreassen S (2011) Modelling and control in biomedical systems. Comput Methods Programs Biomed 104(2):27–28

    CAS  PubMed  Google Scholar 

  • Renner S, Popov M, Schuffenhauer A, Roth H-J, Breitenstein W, Marzinzik A, Lewis I, Krastel P, Nigsch F, Jenkins J, Jacoby E (2011) Recent trends and observations in the design of high-quality screening collections. Future Med Chem 3(6):751–766

    CAS  PubMed  Google Scholar 

  • Resendis-Antonio O, Checa A, Encarnación S (2010) Modeling core metabolism in cancer cells: surveying the topology underlying the Warburg effect. PLoS ONE 5(8):e12383

    PubMed Central  PubMed  Google Scholar 

  • Rolfsson O, Palsson B, Thiele I (2011) The human metabolic reconstruction Recon 1 directs hypotheses of novel human metabolic functions. BMC Syst Biol 5(1):155

    PubMed Central  PubMed  Google Scholar 

  • Roy A, Parker RS (2006) Dynamic modeling of free fatty acid, glucose, and insulin: an extended “minimal model”. Diabetes Technol Ther 8:617–626

    CAS  PubMed  Google Scholar 

  • Safran M, Chalifa-Caspi V, Shmueli O et al (2003) Human gene-centric databases at the Weizmann Institute of Science: GeneCards, UDB, CroW 21 and HORDE. Nucleic Acids Res 31(1):142–146

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sam L, Liu Y, Jianrong L et al (2007) Discovery of protein interaction networks shared by diseases. Pac Symp Biocomput 12:76–87

    Google Scholar 

  • Sangar V, Eddy JA, Simeonidis E, Price N (2012) Mechanistic modeling of aberrant energy metabolism in human disease. Front Physiol 3(404):1–10

    Google Scholar 

  • Schenone M, Dančík V, Wagner BK, Clemons PA (2013), Target identification and mechanism of action in chemical biology and drug discovery. Nat Chem Biol 9:232–240

    Google Scholar 

  • Schleich K, Lavrik I (2013) Mathematical modeling of apoptosis. Cell Commun Signal 11(1):44

    PubMed Central  PubMed  Google Scholar 

  • Scriver CR, Waters PJ (1999) Monogenic traits are not simple: lessons from phenylketonuria. Trends Genet 15:267–272

    CAS  PubMed  Google Scholar 

  • Sedaghat AR, Sherman A, Quon MJ (2002) A mathematical model of metabolic insulin signaling pathways. Am J Physiol Endocrinol Metab 283(5):E1084–E1101

    Google Scholar 

  • Sesti G (2006) Pathophysiology of insulin resistance. Best Pract Res Clin Endocrinol Metab 20(4):665–679

    Google Scholar 

  • Shahrezaei V, Swain PS (2008) The stochastic nature of biochemical networks. Curr Opin Biotechnol 19(4):369–374

    CAS  PubMed  Google Scholar 

  • Sharan TI (2008) Protein networks in disease. Genome Res 18:644–652

    PubMed  Google Scholar 

  • Smith C (2003) Drug target validation: hitting the target. Nature 422(6929):341–347

    Google Scholar 

  • Smith JMD, Maas JA, Garnsworthy PC, Owen MR, Coombes S, Pillay TS, Barrett DA, Symonds ME (2009) Mathematical modeling of glucose homeostasis and its relationship with energy balance and body fat. Obesity 17(4):632–639

    PubMed  Google Scholar 

  • Sriram G, Liao JC, Dipple KM (2005) A comprehensive insulin signaling model for predicting phenotypes using expression data. Abstract, AICHE Annual meeting 2005

  • Stelling J, Sauer U, Szallasi Z, Doyle Iii FJ, Doyle J (2004) Robustness of cellular functions. Cell 118(6):675–685

    CAS  PubMed  Google Scholar 

  • Tegnér JN, Compte A, Auffray C et al (2009) Computational disease modeling—fact or fiction? BMC Syst Biol 3(56):1–3

    Google Scholar 

  • Terentiev A, Moldogazieva N, Shaitan K (2009) Dynamic proteomics in modeling of the living cell. Protein–protein interactions. Biochem (Moscow) 74(13):1586–1607

    CAS  Google Scholar 

  • Tiffin N, Adie E, Turner F, Brunner HG, van Driel MA, Oti M, Lopez-Bigas N, Ouzounis C, Perez-Iratxeta C, Andrade-Navarro MA, Adeyemo A, Patti ME, Semple CAM, Hide W (1980) Computational disease gene identification: a concert of methods prioritizes type 2 diabetes and obesity candidate genes. Nucleic Acids Res 34(10):3067–3081

    Google Scholar 

  • Topp B, Promislow K, Devries G, Miuraa RM, Finegood DT (2000) A model of b-cell mass, insulin, and glucose kinetics: pathways to diabetes. J Theor Biol 206:605–619

    CAS  PubMed  Google Scholar 

  • Tripathy D, Chavez AO (2010) Defects in insulin secretion and action in the pathogenesis of type 2 diabetes mellitus. Curr Diab Rep 10:184–191

    Google Scholar 

  • Tyson JJ, Chen K, Novak B (2001) Network dynamics and cell physiology. Nat Rev Mol Cell Biol 2(12):908–916

    CAS  PubMed  Google Scholar 

  • van Driel MA, Cuelenaere K, Kemmeren PPCW, Leunissen JAM, Brunner HG, Vriend G (2005) GeneSeeker: extraction and integration of human disease-related information from web-based genetic databases. Nucleic Acids Res 33(suppl 2):W758–W761

    PubMed Central  PubMed  Google Scholar 

  • Verkhedkar KD, Raman K, Chandra NR, Vishveshwara S (2007) Metabolome based reaction graphs of M. tuberculosis and M. leprae: a comparative network analysis. PLoS ONE 2(9):e881

    PubMed Central  PubMed  Google Scholar 

  • Vicini P (2008) Kinetic models at the intersection of biology, engineering and medicine. Drug Discov Today Dis Model 5(4):271–272

    Google Scholar 

  • Vicini P, Caumo A, Cobelli C (1999) Glucose effectiveness and insulin sensitivity from the minimal models: consequences of undermodeling assessed by Monte Carlo simulation. IEEE Trans Biomed Eng 46(2):130–137

    CAS  PubMed  Google Scholar 

  • Walpole J, Papin JA, Peirce SM (2013) Multiscale computational models of complex biological systems. Annu Rev Biomed Eng 15(1):137–154

    CAS  PubMed  Google Scholar 

  • Wang E (2010) A roadmap of cancer systems biology. Nature proceedings. http://hdl.handle.net/10101/npre.2010.4322.2

  • Wang E, Lenferink A, O’Connor-McCourt M (2007) Genetic studies of diseases. Cell Mol Life Sci 64(14):1752–1762

    CAS  PubMed  Google Scholar 

  • Wang J, Zhang L, Jing C, Ye G, Wu H, Miao H, Wu Y, Zhou X (2013) Multi-scale agent-based modeling on melanoma and its related angiogenesis analysis. Theor Biol Med Model 10(1):41

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wells JA, McClendon CL (2007) Reaching for high-hanging fruit in drug discovery at protein–protein interfaces. Nature 450(7172):1001–1009

    CAS  PubMed  Google Scholar 

  • Werner B, Dingli D, Traulsen A (2013) A deterministic model for the occurrence and dynamics of multiple mutations in hierarchically organized tissues. J R Soc Interface 10(85):1–10

    Google Scholar 

  • Wilkinson DJ (2009) Stochastic modelling for quantitative description of heterogeneous biological systems. Nat Rev Genet 10(2):122–133

    CAS  PubMed  Google Scholar 

  • Winslow RL, Trayanova N, Geman D, Miller MI (2012) Computational medicine: translating models to clinical care. Sci Transl Med 4(158):158rv111

    Google Scholar 

  • Wolf DM, Arkin AP (2003) Motifs, modules and games in bacteria. Curr Opin Microbiol 6(2):125–134

    CAS  PubMed  Google Scholar 

  • Yildirim MA, Goh K, Cusick ME, Cusick ME, Barabási A-L, Vidal M (2007) Drug-target network. Nat Biotechnol 25(10):1119–1126

    Google Scholar 

  • Zanzoni A, Soler-López M, Aloy P (2009) A network medicine approach to human disease. FEBS Lett 583:1759–1765

    Google Scholar 

  • Zelezniak A, Pers T, Soares S, Patti M, Patil K (2010) Metabolic network topology reveals transcriptional regulatory signatures of type 2 diabetes. PLoS Comput Biol 6:e1000729

    PubMed Central  PubMed  Google Scholar 

  • Zheng Y, Moore H, Piryatinska A, Solis T, Sweet-Cordero EA (2013) Mathematical modeling of tumor cell proliferation kinetics and label retention in a mouse model of lung cancer. Cancer Res 73(12):3525–3533

    CAS  PubMed  Google Scholar 

  • Zhu X, Gerstein M, Snyder M (2007) Getting connected: analysis and principles of biological networks. Genes Dev 21:1010–1024

    CAS  PubMed  Google Scholar 

  • Zhu M, Gao L, Li X, Liu Z, Xu C, Yan Y, Walker E et al (2009) The analysis of the drug-targets based on the topological properties in the human protein–protein interaction network. J Drug Target 17(7):524–532

    CAS  PubMed  Google Scholar 

  • Zinovyev A, Fourquet S, Tournier L, Calzone L, Barillot E (2012) Cell death and life in cancer: mathematical modeling of cell fate decisions. Adv Expt Med Biol 736:261–274

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. V. Venkatesh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Somvanshi, P.R., Venkatesh, K.V. A conceptual review on systems biology in health and diseases: from biological networks to modern therapeutics. Syst Synth Biol 8, 99–116 (2014). https://doi.org/10.1007/s11693-013-9125-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11693-013-9125-3

Keywords

Navigation