Skip to main content
Log in

Design and implementation of three incoherent feed-forward motif based biological concentration sensors

  • Research Article
  • Published:
Systems and Synthetic Biology

Abstract

Synthetic biology is a useful tool to investigate the dynamics of small biological networks and to assess our capacity to predict their behavior from computational models. In this work we report the construction of three different synthetic networks in Escherichia coli based upon the incoherent feed-forward loop architecture. The steady state behavior of the networks was investigated experimentally and computationally under different mutational regimes in a population based assay. Our data shows that the three incoherent feed-forward networks, using three different macromolecular inhibitory elements, reproduce the behavior predicted from our computational model. We also demonstrate that specific biological motifs can be designed to generate similar behavior using different components. In addition we show how it is possible to tune the behavior of the networks in a predicable manner by applying suitable mutations to the inhibitory elements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

EC:

Elongation complex

FFL:

Feed-forward loop

GFP:

Green fluorescent protein

IPTG:

Isopropyl-β-d-thiogalactopyranoside

LB:

Luria broth

ORF:

Open reading frame

PCR:

Polymerase chain reaction

RBS:

Ribosome binding site

T7-RNAP:

T7 RNA polymerase T7-RNAP

SAM:

S-Adenosyl methionine

SBW:

Systems biology workbench

TE:

Translational efficiency

References

  • Ackers GK, Johnson AD, Shea MA (1982) Quantitative model for gene-regulation by lambda-phage repressor. Proc Natl Acad Sci USA Biol Sci 79:1129–1133

    Article  CAS  Google Scholar 

  • Basu S, Gerchman Y, Collins CH, Arnold FH, Weiss R (2005) A synthetic multicellular system for programmed pattern formation. Nature 434:1130–1134

    Article  PubMed  CAS  Google Scholar 

  • Basu S, Mehreja R, Thiberge S, Chen MT, Weiss R (2004) Spatiotemporal control of gene expression with pulse-generating networks. Proc Natl Acad Sci USA 101:6355–6360

    Article  PubMed  CAS  Google Scholar 

  • Belfaiza J, Parsot C, Martel A, Delatour CB, Margarita D, Cohen GN, Saintgirons I (1986) Evolution in biosynthetic pathways – 2 enzymes catalyzing consecutive steps in methionine biosynthesis originate from a common ancestor and possess a similar regulatory region. Proc Natl Acad Sci USA 83:867–871

    Article  PubMed  CAS  Google Scholar 

  • Bray D (1995) Protein molecules as computational elements in living cells. Nature 376:307–312

    Article  PubMed  CAS  Google Scholar 

  • Gottesman S (2004) The small RNA regulators of Escherichia coli: roles and mechanisms. Annu Rev Microbiol 58:303–328

    Article  PubMed  CAS  Google Scholar 

  • Hartwell LH, Hopfield JJ, Leibler S, Murray AW (1999) From molecular to modular cell biology. Nature 402:C47–C52

    Article  PubMed  CAS  Google Scholar 

  • Huang JB, Villemain J, Padilla R, Sousa R (1999) Mechanisms by which T7 lysozyme specifically regulates T7 RNA polymerase during different phases of transcription. J Mol Biol 293:457–475

    Article  PubMed  CAS  Google Scholar 

  • Huerta AM, Collado-Vides J (2003) Sigma70 promoters in Escherichia coli: specific transcription in dense regions of overlapping promoter-like signals. J Mol Biol 333:261–278

    Article  PubMed  CAS  Google Scholar 

  • Ishihara S, Fujimoto K, Shibata T (2005) Cross talking of network motifs in gene regulation that generates temporal pulses and spatial stripes. Genes Cells 10:1025–1038

    Article  PubMed  CAS  Google Scholar 

  • Kaern M, Weiss R (2006) Synthetic gene regulatory systems. In: Szallasi Z, Stelling J, Periwal V (eds) System modeling in cellular biology from concepts to nuts and bolts, chap 13. MIT Press, pp 269–298

  • Kawano M, Reynolds AA, Miranda-Rios J, Storz G (2005) Detection of 5′- and 3′-UTR-derived small RNAs and cis-encoded antisense RNAs in Escherichia coli. Nucleic Acids Res 33:1040–1050

    Article  PubMed  CAS  Google Scholar 

  • Kumar A, Patel SS (1997) Inhibition of T7 RNA polymerase: transcription initiation and transition from initiation to elongation are inhibited by T7 lysozyme via a ternary complex with RNA polymerase and promoter DNA. Biochemistry 36:13954–13962

    Article  PubMed  CAS  Google Scholar 

  • Lee TI, Rinaldi NJ, Robert F, Odom DT, Bar-Joseph Z, Gerber GK, Hannett NM, Harbison CT, Thompson CM, Simon I et al (2002) Transcriptional regulatory networks in Saccharomyces cerevisiae. Science 298:799–804

    Article  PubMed  CAS  Google Scholar 

  • Mangan S, Alon U (2003) Structure and function of the feed-forward loop network motif. Proc Natl Acad Sci USA 100:11980–11985

    Article  PubMed  CAS  Google Scholar 

  • Mayya V, Loew LM (2005) STAT module can function as a biphasic amplitude filter. Syst Biol 2:43–52

    Article  CAS  Google Scholar 

  • Milo R, Shen-Orr S, Itzkovitz S, Kashtan N, Chklovskii D, Alon U (2002) Network motifs: Simple building blocks of complex networks. Science 298:824–827

    Article  PubMed  CAS  Google Scholar 

  • Moffatt BA, Studier FW (1987) T7 Lysozyme inhibits transcription by T7 RNA-polymerase. Cell 49:221–227

    Article  PubMed  CAS  Google Scholar 

  • Old IG, Phillips SEV, Stockley PG, Saintgirons I (1991) Regulation of methionine biosynthesis in the Enterobacteriaceae. Prog Biophys Mol Biol 56:145–185

    Article  PubMed  CAS  Google Scholar 

  • Phillips SEV, Stockley PG (1996) Structure and function of Escherichia coli met repressor: similarities and contrasts with trp repressor. Phil Trans Roy Soc London B Biol Sci 351:527–535

    Article  CAS  Google Scholar 

  • Sauro HM, Kholodenko BN (2004) Quantitative analysis of signaling networks. Prog Biophys Mol Biol 86:5–43

    Article  PubMed  CAS  Google Scholar 

  • Sauro HM, Hucka M, Finney A, Wellock C, Bolouri H, Doyle J, Kitano H (2003) Next generation simulation tools: the Systems Biology Workbench and BioSPICE integration. OMICS 7(4):355–372

    Google Scholar 

  • Selinger DW, Cheung KJ, Mei R, Johansson EM, Richmond CS, Blattner FR, Lockhart DJ, Church GM (2000) RNA expression analysis using a 30 base pair resolution Escherichia coli genome array. Nat Biotechnol 18:1262–1268

    Article  PubMed  CAS  Google Scholar 

  • Setty Y, Mayo AE, Surette MG, Alon U (2003) Detailed map of a cis-regulatory input function. Proc Natl Acad Sci USA 100:7702–7707

    Article  PubMed  CAS  Google Scholar 

  • Shen-Orr SS, Milo R, Mangan S, Alon U (2002) Network motifs in the transcriptional regulation network of Escherichia coli. Nat Genet 31:64–68

    Article  PubMed  CAS  Google Scholar 

  • Stano NM, Patel SS (2004) T7 lysozyme represses T7 RNA polymerase transcription by destabilizing the open complex during initiation. J Biol Chem 279:16136–16143

    Article  PubMed  CAS  Google Scholar 

  • Storz G, Opdyke JA, Zhang AX (2004) Controlling mRNA stability and translation with small, noncoding RNAs. Curr Opin Microbiol 7:140–144

    Article  PubMed  CAS  Google Scholar 

  • Storz G, Altuvia S, Wassarman KM (2005) An abundance of RNA regulators. Annu Rev Biochem 74:199–217

    Article  PubMed  CAS  Google Scholar 

  • Villemain J, Sousa R (1998) Specificity in transcriptional regulation in the absence of specific DNA binding sites: the case of T7 lysozyme. J Mol Biol 281:793–802

    Article  PubMed  CAS  Google Scholar 

  • Weissbach H, Brot N (1991) Microreview regulation of methionine synthesis in Escherichia coli. Mol Microbiol 5(7): 1693–1597

    Article  Google Scholar 

  • Wolf DM, Arkin AP (2003) Motifs, modules and games in bacteria. Curr Opin Microbiol 6:125–134

    Article  PubMed  CAS  Google Scholar 

  • Zhang X, Studier FW (1997) Mechanism of inhibition of bacteriophage T7 RNA polymerase by T7 lysozyme. J Mol Biol 269:10–27

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by a grant from the National Science Foundation (Id 0432190). The GFP was kindly donated by Drew Endy form the Biobricks repository. We would also like to acknowledge useful discussions with Vijay Chickarmane.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Herbert M. Sauro.

Additional information

Brian Aufderheide provided material support.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Entus, R., Aufderheide, B. & Sauro, H.M. Design and implementation of three incoherent feed-forward motif based biological concentration sensors. Syst Synth Biol 1, 119–128 (2007). https://doi.org/10.1007/s11693-007-9008-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11693-007-9008-6

Keywords

Navigation