Skip to main content
Log in

Genealogies: Pedigrees and Phylogenies are Reticulating Networks Not Just Divergent Trees

  • Synthesis Paper
  • Published:
Evolutionary Biology Aims and scope Submit manuscript

Abstract

Pedigrees illustrate the genealogical relationships among individuals, and phylogenies do the same for groups of organisms (such as species, genera, etc.). Here, I provide a brief survey of current concepts and methods for calculating and displaying genealogical relationships. These relationships have long been recognized to be reticulating, rather than strictly divergent, and so both pedigrees and phylogenies are correctly treated as networks rather than trees. However, currently most pedigrees are instead presented as “family trees”, and most phylogenies are presented as phylogenetic trees. Nevertheless, the historical development of concepts shows that networks pre-dated trees in most fields of biology, including the study of pedigrees, biology theory, and biology practice, as well as in historical linguistics in the social sciences. Trees were actually introduced in order to provide a simpler conceptual model for historical relationships, since trees are a specific type of simple network. Computationally, trees and networks are a part of graph theory, consisting of nodes connected by edges. In this mathematical context they differ solely in the absence or presence of reticulation nodes, respectively. There are two types of graphs that can be called phylogenetic networks: (1) rooted evolutionary networks, and (2) unrooted affinity networks. There are quite a few computational methods for unrooted networks, which have two main roles in phylogenetics: (a) they act as a generic form of multivariate data display; and (b) they are used specifically to represent haplotype networks. Evolutionary networks are more difficult to infer and analyse, as there is no mathematical algorithm for reconstructing unique historical events. There is thus currently no coherent analytical framework for computing such networks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Notes

  1. There is no extant copy of this early biblical pedigree, although we do have two dozen complete or partial copies from the period 950–1250 CE. Jean-Baptiste Piggin has a reconstruction at his Macro-Typography website (http://www.piggin.net/stemmahistoryTOC.htm).

  2. Illustrated in the Open Access paper by Ragan (2009).

  3. Illustrated in the Open Access paper by Morrison (2014a).

  4. Illustrated in the Open Access paper by Ragan (2009).

  5. The original is almost unreadable, but Jean-Baptiste Piggin has digitized a readable copy at his Macro-Typography website (http://www.piggin.net/stemmahist/envelopeM29880.htm).

  6. The original is almost unreadable, but Jean-Baptiste Piggin has digitized a readable copy at his Macro-Typography website (http://www.piggin.net/stemmahist/envelopelambert.htm).

  7. Naudin explicitly rejected a network image (“a disordered tangle of intersecting lines”) as well as a chain (“a linear series”).

  8. Both of these groups have extensive online pedigree databases, which are accessed as treemaps rather than networks.

References

  • Alexandre, F. (2014). Trees, waves and linkages: Models of language diversification. In C. Bowern & B. Evans (Eds.), Routledge handbook of historical linguistics (pp. 161–189). London: Routledge.

    Google Scholar 

  • Archibald, J. D. (2014). Aristotle’s ladder, Darwin’s tree: The evolution of visual metaphors for biological order. New York: Columbia University Press.

    Book  Google Scholar 

  • Arvelakis, A., Reczko, M., Stamatakis, A., Symeonidis, A., & Tollis, I. G. (2005). Using treemaps to visualize phylogenetic trees. Lecture Notes in Computer Science, 3745, 283–293.

    Article  Google Scholar 

  • Atkinson, Q. D., & Gray, R. D. (2005). Curious parallels, curious connections—Phylogenetic thinking in biology and historical linguistics. Systematic Biology, 54, 513–526.

    Article  PubMed  Google Scholar 

  • Auroux, S. (1990). Representation and the place of linguistic change before comparative grammar. In T. De Mauro & L. Formigari (Eds.), Leibniz, Humboldt, and the origins of comparativism (pp. 213–238). Amsterdam: John Bejamins.

    Chapter  Google Scholar 

  • Bapteste, E., van Iersel, L., Janke, A., Kelchner, S., Kelk, S., McInerney, J. O., et al. (2013). Networks: expanding evolutionary thinking. Trends in Genetics, 29, 439–441.

    Article  CAS  PubMed  Google Scholar 

  • Baroni, M., Semple, C., & Steel, M. (2006). Hybrids in real time. Systematic Biology, 55, 46–56.

    Article  PubMed  Google Scholar 

  • Barsanti, G. (1988). Le immagini della natura: Scale, mappe, alberi 1700–1800. Nuncius, 3, 55–125.

    Article  Google Scholar 

  • Barsanti, G. (1992). La scala, la mappa, l’albero: Immagini e classificazioni della natura fra sei e ottocento. Firenze: Sansoni Editore.

    Google Scholar 

  • Baum, D. A., & Smith, S. D. (2012). Tree thinking: An introduction to phylogenetic biology. Greenwood Village CO: Roberts and Co.

    Google Scholar 

  • Benveniste, R. E., & Todaro, G. J. (1974). Evolution of C-type viral genes: Inheritance of exogenously acquired viral genes. Nature, 252, 456–459.

    Article  CAS  PubMed  Google Scholar 

  • Bertrand, Y. J., Scheen, A. C., Marcussen, T., Pfeil, B. E., de Sousa, F., & Oxelman B. (2015). Assignment of homoeologs to parental genomes in allopolyploids for species tree inference, with an example from Fumaria (Papaveraceae). Systematic Biology, 64, 448–471.

    Article  PubMed  Google Scholar 

  • Bokhari, S. H., & Janies, D. A. (2010). Reassortment networks for investigating the evolution of segmented viruses. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 7, 288–298.

    Article  PubMed  Google Scholar 

  • Brace, C. L. (1981). Tales of the phylogenetic woods: The evolution and significance of evolutionary trees. American Journal of Physical Anthropology, 56, 411–429.

    Article  Google Scholar 

  • Cavalli-Sforza, L. L., & Feldman, M. W. (1981). Cultural transmission and evolution. Princeton: Princeton University Press.

    Google Scholar 

  • Cayley, A. (1857). On the theory of the analytical forms called trees. Philosophical Magazine, 13, 172–176.

    Google Scholar 

  • Clark, C. A. (2001). Evolution for John Doe: Pictures, the public, and the Scopes trial debate. Journal of American History, 87, 1275–1303.

    Article  Google Scholar 

  • Dagan, T. (2011). Phylogenomic networks. Trends in Microbiology, 19, 483–491.

    Article  CAS  PubMed  Google Scholar 

  • Darwin, C. (1859). On the origin of species by means of natural selection. London: John Murray.

    Google Scholar 

  • Degnan, J. H., & Rosenberg, N. A. (2009). Gene tree discordance, phylogenetic inference and the multispecies coalescent. Trends in Ecology & Evolution, 24, 332–340.

    Article  Google Scholar 

  • Drinkwater, B., & Charleston, M. A. (2014). An improved node mapping algorithm for the cophylogeny reconstruction problem. Coevolution, 2, 1–17.

    Article  Google Scholar 

  • Estabrook, A. H., & Davenport, C. B. (1912). The Nam family: A study in cacogenics (p. 2). Cold Spring Harbor, NY: Eugenics Record Office Memoir No.

    Google Scholar 

  • Fisler, M., & Lecointre, G. (2013). Categorizing ideas about trees: A tree of trees. PLoS ONE, 8, e68814.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Francis, A., & Steel, M. (2015). Which phylogenetic networks are merely trees with additional arcs? Systematic Biology, 64, 768–777.

    Article  PubMed  PubMed Central  Google Scholar 

  • García-Pereira, M. J., Carvajal-Rodríguez, A., Whelan, S., Caballero, A., & Quesada, H. (2014). Impact of deep coalescence and recombination on the estimation of phylogenetic relationships among species using AFLP markers. Molecular Phylogenetics and Evolution, 76, 102–109.

    Article  PubMed  CAS  Google Scholar 

  • Geisler, H., & List, J.-M. (2013). Do languages grow on trees? The tree metaphor in the history of linguistics. In H. Fangerau, H. Geisler, T. Halling, & W. Martin (Eds.), Classification and evolution in biology, linguistics and the history of science: Concepts, methods, visualization (pp. 111–124). Stuttgart: Franz Steiner Verlag.

    Google Scholar 

  • Glaubrecht, M. (2012). Franz Hilgendorf’s dissertation “Beiträge zur Kenntnis des Süßwasserkalks von Steinheim” from 1863: Transcription and description of the first Darwinian interpretation of transmutation. Zoosystematics and Evolution, 88, 231–259.

    Article  Google Scholar 

  • Gontier, N. (2011). Depicting the tree of life: The philosophical and historical roots of evolutionary tree diagrams. Evolution: Education and Outreach, 4, 515–538.

    Article  Google Scholar 

  • Grant, V. (1953). The role of hybridization in the evolution of the leafy-stemmed gillias. Evolution, 7, 51–64.

    Article  Google Scholar 

  • Gusfield, D. (2014). Recombinatorics: The algorithmics of ancestral recombination graphs and explicit phylogenetic networks. Cambridge: MIT Press.

    Google Scholar 

  • Hellström, N. P. (2011). The tree as evolutionary icon: TREE in the Natural History Museum, London. Archives of Natural History, 38, 1–17.

    Article  PubMed  Google Scholar 

  • Hilgendorf, F. (1866). Planorbis multiformis im Steinheimer Süßwasserkalk: ein beispiel von gestaltveränderung im laufe der zeit. Berlin: Buchhandlung von W. Weber.

    Google Scholar 

  • Holder, M. T., Anderson, J. A., & Holloway, A. K. (2001). Difficulties in detecting hybridization. Systematic Biology, 50, 978–982.

    Article  CAS  PubMed  Google Scholar 

  • Holm, G. (1972). Carl Johan Schlyter and textual scholarship. Kungliga Gustav Adolfs Akademiens Årsbok, 1972, 48–80.

    Google Scholar 

  • Howe, C. J., & Windram, H. F. (2011). Phylomemetics—Evolutionary analysis beyond the gene. PLoS Biology, 9, e1001069.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huber, K. T., Oxelman, B., Lott, M., & Moulton, V. (2006). Reconstructing the evolutionary history of polyploids from multilabeled trees. Molecular Biology and Evolution, 23, 1784–1791.

    Article  CAS  PubMed  Google Scholar 

  • Huson, D. H., Rupp, R., & Scornavacca, C. (2011). Phylogenetic networks: Concepts, algorithms and applications. Cambridge: Cambridge University Press.

    Google Scholar 

  • Huson, D. H., & Scornavacca, C. (2011). A survey of combinatorial methods for phylogenetic networks. Genome Biology and Evolution, 3, 23–35.

    Article  CAS  PubMed  Google Scholar 

  • Johnson, J., Roberts, T. L., Verplank, W., Smith, D. C., Irby, C., Beard, M., & Mackey, K. (1989). The Xerox “Star”: A retrospective. IEEE Computer, 22, 11–29.

    Article  Google Scholar 

  • Jones, G., Sagitov, S., & Oxelman, B. (2013). Statistical inference of allopolyploid species networks in the presence of incomplete lineage sorting. Systematic Biology, 62, 467–478.

    Article  PubMed  Google Scholar 

  • Jones, D., & Sneath, P. H. (1970). Genetic transfer and bacterial taxonomy. Bacteriology Reviews, 34, 40–81.

    CAS  Google Scholar 

  • Klapisch-Zuber, C. (1991). The genesis of the family tree. I Tatti Studies in the Italian Renaissance, 4, 105–129.

    Article  Google Scholar 

  • Klapisch-Zuber, C. (2000). L’Ombre des ancêtres: Essai sur l’imaginaire médiéval de la parenté. Paris: Fayard.

    Google Scholar 

  • Kück, P., Misof, B., & Wägele, J.-W. (2014). Systematic errors in maximum-likelihood tree inference. In J.-W. Wägele & T. Bartolomaeus (Eds.), Deep Metazoan phylogeny: The backbone of the Tree of Life (pp. 563–583). Berlin: De Gruyter.

    Google Scholar 

  • Kull, K. (2003). Ladder, tree, web: The ages of biological understanding. Sign Systems Studies, 31, 589–603.

    Google Scholar 

  • Lanier, H. C., & Knowles, L. L. (2015). Applying species-tree analyses to deep phylogenetic histories: Challenges and potential suggested from a survey of empirical phylogenetic studies. Molecular Phylogenetics and Evolution, 83, 191–199.

    Article  PubMed  Google Scholar 

  • Lipson, M., Loh, P.-R., Levin, A., Reich, D., Patterson, N., & Berger, B. (2013). Efficient moment-based inference of population admixture parameters and sources of gene flow. Molecular Biology and Evolution, 30, 1788–1802.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • List, J.-M., Nelson-Sathi, S., Geisler, H., & Martin, W. (2013). Networks of lexical borrowing and lateral gene transfer in language and genome evolution. BioEssays, 36, 141–150.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Marcussen, T., Heier, L., Brysting, A. K., Oxelman, B., & Jakobsen, K. S. (2015). From gene trees to a dated allopolyploid network: Insights from the angiosperm genus Viola (Violaceae). Systematic Biology, 64, 84–101.

    Article  PubMed  Google Scholar 

  • Marcussen, T., Jakobsen, K. S., Danihelka, J., Ballard, H. E., Blaxland, K., Brysting, A. K., & Oxelman, B. (2012). Inferring species networks from gene trees in high-polyploid north American and Hawaiian violets (Viola, Violaceae). Systematic Biology, 61, 107–126.

    Article  CAS  PubMed  Google Scholar 

  • Mardulyn, P. (2012). Trees and/or networks to display intraspecific DNA sequence variation? Molecular Ecology, 21, 3385–3390.

    Article  PubMed  Google Scholar 

  • Martin, W. F. (2011). Early evolution without a tree of life. Biology Direct, 36, 6.

    Google Scholar 

  • Mereschkowsky, C. (1910). Theorie der zwei Plasmaarten als Grundlage der Symbiogenese, einer neuen Lehre von der Entstehung der Organismen. Biologisches Centralblatt, 30, 278–303, 321–347, 353–367.

  • Minaka, N., & Sugiyama, K. (2012). Phylogeny mandala: Chain, tree, and network. Tokyo: NTT.

    Google Scholar 

  • Mindell, D. P. (2013). The tree of life: Metaphor, model, and heuristic device. Systematic Biology, 62, 479–489.

    Article  PubMed  Google Scholar 

  • Mivart, S. G. (1865). Contributions towards a more complete knowledge of the axial skeleton in the primates. Proceedings of the Zoological Society of London, 33, 545–592.

    Article  Google Scholar 

  • Moret, B. M. E., Nakhleh, L., Warnow, T., Linder, C. R., Tholse, A., Padolina, A., et al. (2004). Phylogenetic networks: Modeling, reconstructibility, and accuracy. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 1, 13–23.

    Article  CAS  PubMed  Google Scholar 

  • Morrison, D. A. (2005). Networks in phylogenetic analysis: New tools for population biology. International Journal for Parasitology, 35, 567–582.

    Article  PubMed  Google Scholar 

  • Morrison, D. A. (2011). Introduction to phylogenetic networks. Uppsala: RJR Productions.

    Google Scholar 

  • Morrison, D. A. (2013a). [Book review of] “Tree thinking: An introduction to phylogenetic biology”. Systematic Biology, 62, 634–637.

    Article  Google Scholar 

  • Morrison, D. A. (2013b). Phylogenetic networks are fundamentally different from other kinds of biological networks. In W. J. Zhang (Ed.), Network biology: Theories, methods and applications (pp. 23–68). New York: Nova Science.

    Google Scholar 

  • Morrison, D. A. (2014a). Phylogenetic networks: A review of methods to display evolutionary history. Annual Research and Review in Biology, 4, 1518–1543.

    Article  Google Scholar 

  • Morrison, D. A. (2014b). Is the tree of life the best metaphor, model or heuristic for phylogenetics? Systematic Biology, 63, 628–638.

    Article  PubMed  Google Scholar 

  • Morrison, D. A. (2014c). Phylogenetic networks—A new form of multivariate data summary for data mining and exploratory data analysis. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 4, 296–312.

    Google Scholar 

  • Morrison, D. A. (2015a). [Book review of] ‘The tree of life: Evolution and classification of living organisms’. Systematic Biology, 64, 546–548.

    Article  Google Scholar 

  • Morrison, D. A. (2015b). Pattern recognition in phylogenetics: Trees and networks. In M. Elloumi, C. S. Iliopoulos, J. T. L. Wang, & A. Y. Zomaya (Eds.), Pattern recognition in computational molecular biology: Techniques and approaches (pp. 417–436). New York: Wiley.

    Chapter  Google Scholar 

  • Müller, F. (1864). Für Darwin. Leipzig: Verlag von Wilhelm Engelman.

    Google Scholar 

  • Nakhleh, L. (2013). Computational approaches to species phylogeny inference and gene tree reconciliation. Trends in Ecology & Evolution, 28, 719–728.

    Article  Google Scholar 

  • Naudin, C. (1852). Considérations philosophiques sur l’espèce et la variété. Revue Horticole, 1(4), 102–109.

    Google Scholar 

  • O’Hara, R. J. (1992). Telling the tree: Narrative representation and the study of evolutionary history. Biology and Philosophy, 7, 135–160.

    Article  Google Scholar 

  • Patterson, N. J., Moorjani, P., Luo, Y., Mallick, S., Rohland, N., Zhan, Y., et al. (2012). Ancient admixture in human history. Genetics, 192, 1065–1093.

    Article  PubMed  PubMed Central  Google Scholar 

  • Pax, F. A. (1888). Monographische übersicht über die arten der gattung Primula. Botanische Jahrbücher für Systematik, Pflanzengeschichte und Pflanzengeographie, 10, 75–241.

    Google Scholar 

  • Penny, D. (2011). Darwin’s theory of descent with modification, versus the biblical tree of life. PLoS Biology, 9, e1001096.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pickrell, J. K., & Pritchard, J. K. (2012). Inference of population splits and mixtures from genome-wide allele frequency data. PLoS Genetics, 8, e1002967.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pietsch, T. W. (2012). Trees of life: A visual history of evolution. Baltimore: Johns Hopkins University Press.

    Google Scholar 

  • Piggin, J.-B. (2013). The great stemma: A Late Antique diagrammatic chronicle of pre-Christian time. Studia Patristica, 62, 259–278.

    Google Scholar 

  • Platnick, N. I., & Cameron, H. D. (1977). Cladistic methods in textual, linguistic, and phylogenetic analysis. Systematic Zoology, 26, 380–385.

    Article  Google Scholar 

  • Popa, O., Hazkani-Covo, E., Landan, G., Martin, W., & Dagan, T. (2011). Directed networks reveal genomic barriers and DNA repair bypasses to lateral gene transfer among prokaryotes. Genome Research, 21, 599–609.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Posada, D., & Crandall, K. A. (2001). Intraspecific gene genealogies: Trees grafting into networks. Trends in Ecology & Evolution, 16, 37–45.

    Article  Google Scholar 

  • Priestly, T. M. S. (1975). Schleicher, Éelakovsk˝, and the family-tree diagram: A puzzle in the history of linguistics. Historiographica Linguistica, 2, 299–333.

    Article  Google Scholar 

  • Ragan, M. (2009). Trees and networks before and after Darwin. Biology Direct, 4, 43.

    Article  PubMed  PubMed Central  Google Scholar 

  • Reif, W.-E. (1983). Hilgendorf’s (1863) dissertation on the Steinheim planorbids (Gastropoda; Miocene): The development of a phylogenetic research program for paleontology. Paläontologische Zeitschrift, 57, 7–20.

    Article  Google Scholar 

  • Rieppel, O. (2010). The series, the network and the tree: Changing metaphors of order in nature. Biology and Philosophy, 25, 475–496.

    Article  Google Scholar 

  • Ritschl, F. (1832). Thomae Magistri sive theoduli monachi ecloga vocum Atticarum. Halle: Orphanotrophei.

    Google Scholar 

  • Salzburger, W., Ewing, G. B., & von Haeseler, A. (2011). The performance of phylogenetic algorithms in estimating haplotype genealogies with migration. Molecular Ecology, 20, 1952–1963.

    Article  PubMed  Google Scholar 

  • Sang, T., & Zhong, Y. (2000). Testing hybridization hypotheses based on incongruent gene trees. Systematic Biology, 49, 422–434.

    Article  CAS  PubMed  Google Scholar 

  • Schleicher, A. (1853). Die ersten Spaltungen des Indogermanischen Urvolkes. Allgemeine Monatsschrift für Wissenschaft und Literatur, 1853, 786–787.

    Google Scholar 

  • Schmidt, J. (1872). Die werwandtschaftsverhältnisse de indogermanischen sprachen. Weimar: Hermann Böhlau.

    Google Scholar 

  • Simmons, M. P., & Gatesy, J. (2015). Coalescence vs. concatenation: Sophisticated analyses vs. first principles applied to rooting the angiosperms. Molecular Phylogenetics and Evolution, 91, 98–122.

    Article  PubMed  Google Scholar 

  • Southworth, F. C. (1964). Family-tree diagrams. Language, 40, 557–565.

    Article  Google Scholar 

  • Springer, M. S. & Gatesy, J. (2016). The gene tree delusion. Molecular Phylogenetics and Evolution, 94, 1–33.

    Article  PubMed  Google Scholar 

  • Stevens, P. F. (1984). Metaphors and typology in the development of botanical systematics 1690–1960, or the art of putting new wine in old bottles. Taxon, 33, 169–211.

    Article  Google Scholar 

  • Stevens, P. F. (1994). The development of biological systematics: Antoine-Laurent de Jussieu, nature, and the natural system. New York: Columbia University Press.

    Google Scholar 

  • Sutrop, U. (2000). From the ‘Language Family Tree’ to the ‘Tangled Web of Languages’. In: A. Nurk, T. Palo & T. Seilenthal (Eds.), Congressus nonus internationales Fenno-Ugristarum 713.8.2000. Part I: orationes plenariae & orationes publicae (pp. 197–219). Tartu, Estonia: Eesti Fennougristide Komitee.

  • Sutrop, U. (2012). Estonian traces in the tree of life concept and in the language family tree theory. Journal of Estonian and Finno-Ugric Linguistics, 3, 297–326.

    Google Scholar 

  • Szöllösi, G. J., Tannier, E., Daubin, V., & Boussau, B. (2015). The inference of gene trees with species trees. Systematic Biology, 64, e42–e62.

    Article  PubMed  Google Scholar 

  • Tassy, P. (1991). L’arbre à remonter le temps. Paris: Christian Bourgois Éditeur.

    Google Scholar 

  • Tassy, P. (2011). Trees before and after Darwin. Journal of Zoological Systematics and Evolutionary Research, 49, 89–101.

    Article  Google Scholar 

  • Wallace, A. R. (1855). On the law which has regulated the introduction of new species. Annals and Magazine of Natural History, 16(2), 184–196.

    Article  Google Scholar 

  • Xi, Z., Liu, L., & Davis, C. C. (2015). Genes with minimal phylogenetic information are problematic for coalescent analyses when gene tree estimation is biased. Molecular Phylogenetics and Evolution, 92, 63–71.

    Article  PubMed  Google Scholar 

  • Yu, Y., Barnett, R. M., & Nakhleh, L. (2013a). Parsimonious inference of hybridization in the presence of incomplete lineage sorting. Systematic Biology, 62, 738–751.

    Article  PubMed  PubMed Central  Google Scholar 

  • Yu, Y., Degnan, J. H., & Nakhleh, L. (2012). The probability of a gene tree topology within a phylogenetic network with applications to hybridization detection. PLoS Genetics, 8, e1002660.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu, Y., Dong, J., Liu, K. J., & Nakhleh, L. (2014). Maximum likelihood inference of reticulate evolutionary histories. Proceedings of the National Academy of Sciences of the USA, 111, 16448–16453.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu, Y., Ristic, N., & Nakhleh, L. (2013b). Fast algorithms and heuristics for phylogenomics under ILS and hybridization. BMC Bioinformatics, 14, S6.

    Article  PubMed  PubMed Central  Google Scholar 

  • Yu, Y., Than, C., Degnan, J. H., & Nakhleh, L. (2011). Coalescent histories on phylogenetic networks and detection of hybridization despite incomplete lineage sorting. Systematic Biology, 60, 138–149.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yutin, N., Raoult, D., & Koonin, E. V. (2013). Virophages, polintons, and transpovirons: A complex evolutionary network of diverse selfish genetic elements with different reproduction strategies. Virology Journal, 10, 158.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

Thanks to Akademikernas A-kassa and Trygghetsstiftelsen for funding, and to Luay Nakhleh and an anonymous referee for comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David A. Morrison.

Ethics declarations

Conflict of interest

The author declares that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Morrison, D.A. Genealogies: Pedigrees and Phylogenies are Reticulating Networks Not Just Divergent Trees. Evol Biol 43, 456–473 (2016). https://doi.org/10.1007/s11692-016-9376-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11692-016-9376-5

Keywords

Navigation