Skip to main content
Log in

Sexiness, Individual Condition, and Species Identity: The Information Signaled by Ornaments and Assessed by Choosing Females

  • Synthesis Paper
  • Published:
Evolutionary Biology Aims and scope Submit manuscript

Abstract

Biologists have long debated the evolution of animal ornamentation via female choice. Much of the discussion of ornament evolution has focused on three hypotheses: the species recognition hypothesis, the indicator trait hypothesis, and the runaway sexual selection hypothesis. These models of sexual selection have generally been considered in isolation, with each assessed as a potential complete explanation for ornament evolution. In fact, any choosing female potentially benefits by assessing three distinct characteristics of a prospective mate—species identity, individual condition, and sexiness—such that there can be no comprehensive explanation of ornamentation without consideration of the need for females to assess these three key attributes of males. There is no logical basis for advocating for the importance of one of these classes of information over another. Consideration that all three assessments of prospective males work in tandem to shape the evolution of female preferences for male ornaments leads to a better understanding of the diversity of ornamentation within and among animal species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abbott, R., Albach, D., Ansell, S., Arntzen, J., Baird, S., Bierne, N., et al. (2013). Hybridization and speciation. Journal of Evolutionary Biology, 26, 229–246.

    Article  CAS  PubMed  Google Scholar 

  • Andersson, M. (1986). Evolution of condition-dependent sex ornaments and mating preferences: sexual selection based on viability differences. Evolution, 40, 804–816.

    Article  Google Scholar 

  • Andersson, M. (1994). Sexual selection. Princeton, NJ: Princeton University Press.

    Google Scholar 

  • Andersson, M., & Simmons, L. W. (2006). Sexual selection and mate choice. Trends in Ecology & Evolution, 21, 296–302. doi:10.1016/j.tree.2006.03.015.

    Article  Google Scholar 

  • Arnold, S. J. (1983). Sexual selection: The interface of theory and empiricism. In P. P. G. Bateson (Ed.), Mate choice (pp. 67–107). Cambridge: Cambridge University Press.

    Google Scholar 

  • Arnqvist, G. (2004). Sexual conflict and sexual selection: Lost in the chase. Evolution, 58, 1383–1388.

    Article  PubMed  Google Scholar 

  • Bank, C., Hermisson, J., & Kirkpatrick, M. (2012). Can reinforcement complete speciation? Evolution, 66, 229–239.

    Article  PubMed  Google Scholar 

  • Basolo, A. L. (1991). Male swords and female preferences. Science, 253, 1426–1427.

    Article  CAS  PubMed  Google Scholar 

  • Berglund, A., Bisazza, A., & Pilastro, A. (1996). Armaments and ornaments: An evolutionary explanation of traits of dual utility. Biological Journal of the Linnean Society, 58, 385–399.

    Article  Google Scholar 

  • Biernaskie, J. M., Grafen, A., & Perry, J. C. (2014). The evolution of index signals to avoid the cost of dishonesty. Proceedings of the Royal Society of London B: Biological Sciences, 281, 20140876.

    Article  Google Scholar 

  • Brodie, E. D, I. I. I. (1993). Differential avoidance of coral snake banded patterns by free-ranging avian predators in Costa Rica. Evolution, 47, 227–235.

    Article  Google Scholar 

  • Bro-Jørgensen, J. (2010). Dynamics of multiple signalling systems: Animal communication in a world in flux. Trends in Ecology & Evolution, 25, 292–300.

    Article  Google Scholar 

  • Byers, J. A., & Waits, L. (2006). Good genes sexual selection in nature. Proceedings of the National Academy of Sciences of the United States of America, 103, 16343–16345. doi:10.1073/pnas.0608184103.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Caro, T., Hill, G. E., Lindstrom, L., & Speed, M. (2008). The colours of animals: From Wallace to the present day. II. Conspicuous colouration. In C. Smith & G. Beccaloni (Eds.), Natural selection and beyond: The intellectual legacy of Alfred Russel Wallace. New York: Oxford Press.

    Google Scholar 

  • Cotton, S., Small, J., & Pomiankowski, A. (2006). Sexual selection and condition-dependent mate preferences. Current Biology, 16, R755–R765. doi:10.1016/j.cub.2006.08.022.

    Article  CAS  PubMed  Google Scholar 

  • Coyne, J. A., & Orr, H. A. (2004). Speciation. New York: Sinauer Associates Inc.

    Google Scholar 

  • Cronin, H. (1991). The ant and the peacock. Cambridge: Cambridge University Press.

    Google Scholar 

  • Dale, J. (2006). Intraspecific variation in bird colors. In G. E. Hill & K. J. McGraw (Eds.), Bird coloration: Function and evolution (Vol. 2). Cambridge: Harvard University Press.

    Google Scholar 

  • Dale, J., Lank, D. B., & Reeve, H. K. (2001). Signaling individual identity versus quality: A model and case studies with ruffs, queleas, and house finches. American Naturalist, 158, 75–86.

    Article  CAS  PubMed  Google Scholar 

  • Dumbacher, J. P., Beehler, B. M., Spande, T. F., Garraffo, H. M., & Daly, J. W. (1992). Homobatrachotoxin in the genus Pitohui: Chemical defense in birds? Science, 258, 799.

    Article  CAS  PubMed  Google Scholar 

  • Endler, J. A., & Basolo, A. L. (1998). Sensory ecology, receiver biases and sexual selection. Trends in Ecology & Evolution, 13, 415–420.

    Article  CAS  Google Scholar 

  • Fisher, R. A. (1915). The evolution of sexual preference. The Eugenics Review, 7, 184–192.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Fisher, R. A. (1930). The genetical theory of natural selection. New York: Dover.

    Book  Google Scholar 

  • Fisher, R. A. (1958). The genetical theory of natural selection (2nd ed.). New York: Dover.

    Google Scholar 

  • Fuller, R. C., Houle, D., & Travis, J. (2005). Sensory bias as an explanation for the evolution of mate preferences. The American Naturalist, 166, 437–446.

    Article  PubMed  Google Scholar 

  • Grafen, A. (1990). Sexual selection unhandicapped by the Fisher process. Journal of Theoretical Biology, 144, 473–516.

    Article  CAS  PubMed  Google Scholar 

  • Griffith, S. C., & Pryke, S. R. (2006). Benefits to females of assessing color displays. In G. E. Hill & K. J. McGraw (Eds.), Bird coloration: Function and evolution (Vol. 2). Cambridge Mass: Harvard University Press.

    Google Scholar 

  • Hamilton, W. D., & Zuk, M. (1982). Heritable true fitness and bright birds: A role for parasites? Science, 218, 384–386.

    Article  CAS  PubMed  Google Scholar 

  • Helfenstein, F., Losdat, S., Moller, A. P., Blount, J. D., & Richner, H. (2010). Sperm of colourful males are better protected against oxidative stress. Ecology Letters, 13, 213–222. doi:10.1111/j.1461-0248.2009.01419.x.

    Article  PubMed  Google Scholar 

  • Higham, J. P. (2013). How does honest costly signaling work? Behavioral Ecology, 25, 8–11.

    Article  Google Scholar 

  • Hill, G. E. (1991). Plumage coloration is a sexually selected indicator of male quality. Nature, 350, 337–339.

    Article  Google Scholar 

  • Hill, G. E. (1994a). Geographic variation in male ornamentation and female mate preference in the house finch: A comparative test of models of sexual selection. Behavioral Ecology, 5, 64–73.

    Article  Google Scholar 

  • Hill, G. E. (1994b). Trait elaboration via adaptive mate choice: Sexual conflict in the evolution of signals of male quality. Ethology, Ecology and Evolution, 6, 351–370.

    Article  Google Scholar 

  • Hill, G. E. (2002). A red bird in a brown bag: the function and evolution of ornamental plumage coloration in the House Finch. New York: Oxford University Press.

    Book  Google Scholar 

  • Hill, G. E. (2006). Female choice for ornamental coloration. In G. E. Hill & K. J. McGraw (Eds.), Bird coloration: Function and evolution (Vol. 2). Cambridge, MA: Harvard University Press.

    Google Scholar 

  • Hill, G. E. (2011). Condition-dependent traits as signals of the functionality of vital cellular processes. Ecology Letters, 14, 625–634.

    Article  PubMed  Google Scholar 

  • Hill, G. E. (2013). The evolution of ornaments and armaments. In K. Yasakawa (Ed.), Animal behavior: Function and evolution (Vol. 2). New York: Prager.

    Google Scholar 

  • Hill, G. E. (2014). Cellular respiration: The nexus of stress, condition, and ornamentation. Integrative and Comparative Biology, 54, 645–657.

    Article  PubMed  Google Scholar 

  • Hill, G. E. (2015). Mitonuclear ecology. Molecular Biology and Evolution,. doi:10.1093/molbev/msv104.

    PubMed  Google Scholar 

  • Hill, G. E. (in press). Selection for reinforcement versus selection for signals of quality and attractiveness. Ideas in Ecology and Evolution.

  • Hill, G. E., & Johnson, J. D. (2013). The mitonuclear compatibility hypothesis of sexual selection. Proceedings of the Royal Society B-Biological Sciences, 280, 20131314. doi:10.1098/rspb.2013.1314.

    Article  PubMed Central  Google Scholar 

  • Hill, G. E., & McGraw, K. J. (2004). Correlated changes in male plumage coloration and female mate choice in cardueline finches. Animal Behavior, 67, 27–35.

    Article  Google Scholar 

  • Hoelzer, G. A. (1989). The good parent process of sexual selection. Animal Behaviour, 38, 1067–1078.

    Article  Google Scholar 

  • Holland, B., & Rice, W. R. (1998). Chase-away sexual selection: Antagonistic seduction versus resistance. Evolution, 52, 1–7. doi:10.2307/2410914.

    Article  Google Scholar 

  • Houle, D., & Kondrashov, A. S. (2002). Coevolution of costly mate choice and condition-dependent display of good genes. Proceedings of the Royal Society of London. Series B: Biological Sciences, 269, 97–104.

    Article  PubMed Central  PubMed  Google Scholar 

  • Hudson, E. J., & Price, T. D. (2014). Pervasive reinforcement and the role of sexual selection in biological speciation. Journal of Heredity, 105(S1), 821–833.

    Article  PubMed  Google Scholar 

  • Iwasa, Y., & Pomiankowski, A. (1999). Good parent and good genes models of handicap evolution. Journal of Theoretical Biology, 200, 97–109.

    Article  CAS  PubMed  Google Scholar 

  • Kirkpatrick, M. (1982). Sexual selection and the evolution of female choice. Evolution, 36, 1–12.

    Article  Google Scholar 

  • Kirkpatrick, M. (1987). Sexual selection by female choice in polygynous mammals. Annual Review of Ecology and Systematics, 18, 43–70.

    Article  Google Scholar 

  • Kirkpatrick, M., & Ryan, M. J. (1991). The evolution of mating preferences and the paradox of the lek. Nature, 350, 33–38.

    Article  Google Scholar 

  • Kodric-Brown, A., & Brown, J. H. (1984). Truth in advertising: The kinds of traits favored by sexual selection. American Naturalist, 124, 309–323.

    Article  Google Scholar 

  • Kokko, H., Brooks, R., McNamara, J. M., & Houston, A. I. (2002). The sexual selection continuum. Proceedings of the Royal Society B-Biological Sciences, 269, 1331–1340. doi:10.1098/rspb.2002.2020.

    Article  PubMed Central  Google Scholar 

  • Kokko, H., Jennions, M. D., & Brooks, R. (2006). Unifying and testing models of sexual selection. Annual Review of Ecology Evolution and Systematics, 37, 43–66.

    Article  Google Scholar 

  • Kuijper, B., Pen, I., & Weissing, F. J. (2012). A guide to sexual selection theory. Annual Review of Ecology Evolution and Systematics, 43, 287.

    Article  Google Scholar 

  • Lande, R. (1981). Models of speciation by sexual selection on polygenic traits. Proceedings of the National Academy of Sciences of the United States of America, 78(6), 3721–3725.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ligon, J. D., Thornhill, R., Zuk, M., & Johnson, K. (1990). Male-male competition, ornamentation and the role of testosterone in sexual selection in red jungle fowl. Animal Behaviour, 40, 367–373.

    Article  Google Scholar 

  • Lyon, B. E., & Montgomerie, R. (2012). Sexual selection is a form of social selection. Philosophical Transactions of the Royal Society B-Biological Sciences, 367, 2266–2273. doi:10.1098/rstb.2012.0012.

    Article  PubMed Central  Google Scholar 

  • Mallet, J. (2008). Hybridization, ecological races and the nature of species: Empirical evidence for the ease of speciation. Philosophical Transactions of the Royal Society B: Biological Sciences, 363, 2971–2986.

    Article  Google Scholar 

  • Martin, P. R. (in press). The paradox of the Birds-of-Paradise: persistent hybridization as a signature of historical reinforcement. Ideas in Ecology and Evolution.

  • Maynard Smith, J. (1991). Theories of sexual selection. Trends in Ecology & Evolution, 6, 146–151.

    Article  Google Scholar 

  • Maynard-Smith, J. (1991). Theories of sexual selection. Trends in Ecology & Evolution, 6, 146–151.

    Article  Google Scholar 

  • Mayr, E. (1963). Animal species and evolution. Cambridge: Harvard University Press.

    Book  Google Scholar 

  • Mays, H. L., & Hill, G. E. (2004). Choosing mates: good genes versus genes that are a good fit. Trends in Ecology & Evolution, 19, 554–559.

    Article  Google Scholar 

  • Mendelson, T. C., & Shaw, K. L. (2012). The (mis)concept of species recognition. Trends in Ecology & Evolution, 27(8), 421–427. doi:10.1016/j.tree.2012.04.001.

    Article  Google Scholar 

  • Møller, A. P., & Alatalo, R. V. (1999). Good-genes effects in sexual selection. Proceedings of the Royal Society of London. Series B: Biological Sciences, 266, 85–91.

    Article  Google Scholar 

  • Møller, A. P., & Pomiankowski, A. (1993). Why have birds got multiple sexual ornaments? Behavioral Ecology and Sociobiology, 32, 167–176.

    Google Scholar 

  • Navara, K. J., Anderson, E. M., & Edwards, M. L. (2012). Comb size and color relate to sperm quality: A test of the phenotype-linked fertility hypothesis. Behavioral Ecology, 23, 1036–1041. doi:10.1093/beheco/ars068.

    Article  Google Scholar 

  • Neff, B. D., & Pitcher, T. E. (2005). Genetic quality and sexual selection: An integrated framework for good genes and compatible genes. Molecular Ecology, 14, 19–38. doi:10.1111/j.1365-294X.2004.02395.x.

    Article  CAS  PubMed  Google Scholar 

  • Petrie, M. (1994). Improved growth and survival of offspring of peacocks with more elaborate trains. Nature, 371, 598–599.

    Article  CAS  Google Scholar 

  • Pizzari, T., & Snook, R. R. (2003). Perspective: Sexual conflict and sexual selection: chasing away paradigm shifts. Evolution, 57, 1223–1236.

    Article  PubMed  Google Scholar 

  • Pomiankowski, A., Iwasa, Y., & Nee, S. (1991). The evolution of costly mate preferences. I. Fisher and biased mutation. Evolution, 45, 1422–1430.

    Article  Google Scholar 

  • Price, T. (2007). Speciation in Birds. London: Roberts and Company Publishers.

    Google Scholar 

  • Price, T., Schluter, D., & Heckman, N. E. (1993). Sexual selection when the female directly benefits. Biological Journal of the Linnean Society, 48, 187–211.

    Article  Google Scholar 

  • Prum, R. O. (1997). Phylogenetic tests of alternative intersexual selection mechanisms: Trait macroevolution in a polygynous clade (Aves: Pipridae). American Naturalist, 149, 668–692. doi:10.1086/286014.

    Article  Google Scholar 

  • Prum, R. O. (2010). The Lande–Kirkpatrick mechanism is the null model of evolution by intersexual selection: Implications for meaning, honesty, and design in intersexual signals. Evolution, 64(11), 3085–3100. doi:10.1111/j.1558-5646.2010.01054.x.

    Article  PubMed  Google Scholar 

  • Prum, R. O. (2012). Aesthetic evolution by mate choice: Darwin’s really dangerous idea. Philosophical Transactions of the Royal Society B: Biological Sciences, 367, 2253–2265.

    Article  Google Scholar 

  • Prum, R. O., LaFountain, A. M., Berro, J., Stoddard, M. C., & Frank, H. A. (2012). Molecular diversity, metabolic transformation, and evolution of carotenoid feather pigments in cotingas (Aves: Cotingidae). Journal of Comparative Physiology B, 182, 1095–1116.

    Article  CAS  Google Scholar 

  • Ritchie, M. G. (2007). Sexual selection and speciation. Annual Review of Ecology Evolution and Systematics, 38, 79–102. doi:10.1146/annurev.ecolsys.38.091206.095733.

    Article  Google Scholar 

  • Rowe, L., & Houle, D. (1996). The lek paradox and the capture of genetic variance by condition dependent traits. Proceedings of the Royal Society of London Series B-Biological Sciences, 263, 1415–1421.

    Article  Google Scholar 

  • Rowe, M. P., & Owings, D. H. (1978). The meaning of the sound of rattling by rattlesnakes to California ground squirrels. Behaviour, 66, 252–267.

    Article  Google Scholar 

  • Ryan, M. J., & Keddyhector, A. (1992). Directional patterns of female mate choice and the role of sensory biases. American Naturalist, 139, S4–S35. doi:10.1086/285303.

    Article  Google Scholar 

  • Ryan, M. J., & Rand, A. S. (1993). Species recognition and sexual selection as a unitary problem in animal communication. Evolution, 47, 647–657. doi:10.2307/2410076.

    Article  Google Scholar 

  • Servedio, M. R., & Bürger, R. (2014). The counterintuitive role of sexual selection in species maintenance and speciation. Proceedings of the National Academy of Sciences, 111, 8113–8118.

    Article  CAS  Google Scholar 

  • Servedio, M. R., & Noor, M. A. (2003). The role of reinforcement in speciation: theory and data. Annual Review of Ecology, Evolution, and Systematics, 34, 339–364.

    Article  Google Scholar 

  • Sheldon, B. (1994). Male phenotype, fertility, and the pursuit of extra-pair copulations by female birds. Proceedings of the Royal Society of London. Series B: Biological Sciences, 257, 25–30.

    Article  Google Scholar 

  • Uy, J. A. C., & Safran, R. J. (2013). Variation in the temporal and spatial use of signals and its implications for multimodal communication. Behavioral Ecology and Sociobiology, 67, 1499–1511.

    Article  Google Scholar 

  • van Doorn, G. S., & Weissing, F. J. (2006). Sexual conflict and the evolution of female preferences for indicators of male quality. The American Naturalist, 168, 742–757.

    Article  PubMed  Google Scholar 

  • Vortman, Y., Lotem, A., Dor, R., Lovette, I., & Safran, R. J. (2013). Multiple sexual signals and behavioral reproductive isolation in a diverging population. The American Naturalist, 182, 514–523.

    Article  PubMed  Google Scholar 

  • Wallace, A. R. (1889). Darwinism. London: Macmillian.

    Google Scholar 

  • Watt, W. B., Carter, P. A., & Donohue, K. (1986). Females’ choice of “good genotypes” as mates is promoted by an insect mating system. Science, 233, 1187–1190.

    Article  CAS  PubMed  Google Scholar 

  • Weatherhead, P. J., & Robertson, R. J. (1979). Offspring quality and the polygyny threshold: the “sexy son” hypothesis. American naturalist, 113, 201–208.

    Article  Google Scholar 

  • Zahavi, A. (1975). Mate selection—A selection for a handicap. Journal of Theoretical Biology, 53, 205–214.

    Article  CAS  PubMed  Google Scholar 

  • Zahavi, A. (1977). The cost of honesty (further remarks on the handicap principle). Journal of Theoretical Biology, 67, 603–605.

    Article  CAS  PubMed  Google Scholar 

  • Zuk, M., Johnson, K., Thornhill, R., & Ligon, J. D. (1990). Parasites and male ornaments in free-ranging and captive red jungle fowl. Behaviour, 114, 232–248.

    Article  Google Scholar 

Download references

Acknowledgments

During manuscript preparation the author was supported by IOS0923600. The Hill/Hood/Wada laboratory groups provided valuable feedback on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Geoffrey E. Hill.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hill, G.E. Sexiness, Individual Condition, and Species Identity: The Information Signaled by Ornaments and Assessed by Choosing Females. Evol Biol 42, 251–259 (2015). https://doi.org/10.1007/s11692-015-9331-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11692-015-9331-x

Keywords

Navigation