Skip to main content
Log in

Disentangling the Size and Shape Components of Sexual Dimorphism

  • Research Article
  • Published:
Evolutionary Biology Aims and scope Submit manuscript

Abstract

Many organisms are sexually dimorphic, reflecting sex-specific selection pressures. But although sexual dimorphism may consist of different variables from size to shape and physiology, most research emphasizes a single aspect of sexual dimorphism, notably size, without specifying its components and their relationship. Among terrestrial animals, spiders exhibit most extreme sex-specific differences in size and abdominal shape, and therefore represent ideal models to address this question. Here, we dissect sexual dimorphism in spiders at two phylogenetic hierarchical levels. At the species level, we employ comparative phylogenetic tests to explore the association between sexual shape dimorphism (SShD) and sexual size dimorphism (SSD) in the orbweb clade Argiopinae. At the genus level, we then explore such patterns on a phylogeny of orb weavers (Araneoidea). Female argiopines had more diverse abdominal morphotypes than the males and the abdominal shape evolution was only poorly correlated between the sexes. Phylogenetic and comparative data suggested that evolution of SShD in argiopines was related to geographic history, but that sexually shape monomorphic cases arose through selection for male size, perhaps acting against fecundity selection. While in argiopines there was no clear association between SShD and SSD, we detected a significant correlation in all orb weavers at the genus level. The shape and the size components of sexual dimorphism may thus respond independently to selection pressures, but at certain phylogenetic levels SSD may be a prerequisite for SShD. Research on other animal groups is needed to establish whether the here detected patterns on spiders are general.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Albertson, A. E., Teulé, F., Weber, W., Yarger, J. L., & Lewis, R. V. (2014). Effects of different post-spin stretching conditions on the mechanical properties of synthetic spider silk fibers. Journal of the Mechanical Behavior of Biomedical Materials, 29, 225–234. doi:10.1016/j.jmbbm.2013.09.002.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Andersson, M. B. (1994). Sexual selection. Princeton: Princeton University Press.

    Google Scholar 

  • Badyaev, A. V., & Martin, T. E. (2000). Sexual dimorphism in relation to current selection in the house finch. Evolution, 54(3), 987–997.

    Article  CAS  PubMed  Google Scholar 

  • Benítez, H. A., Avaria-Llautureo, J., Canales-Aguirre, C. B., Jerez, V., Parra, L. E., & Hernández, C. E. (2013). Evolution of sexual size dimorphism and its relationship with sex ratio in carabid beetles of Genus Ceroglossus Solier. Current Zoology, 59(6), 769–777.

    Google Scholar 

  • Bjørn, P. D. P. (1997). A taxonomic revision of the African part of the orb-weaving genus Argiope (Araneae: Araneidae). Entomologica Scandinavica, 28(2), 199–239.

    Article  Google Scholar 

  • Blamires, S. J., Wu, C. L., Blackledge, T. A., & Tso, I. M. (2012). Post-secretion processing influences spider silk performance. Journal of the Royal Society, Interface, 9(75), 2479–2487. doi:10.1098/rsif.2012.0277.

    Article  PubMed Central  PubMed  Google Scholar 

  • Blanckenhorn, W. U. (2000). The evolution of body size: What keeps organisms small? Quarterly Review of Biology, 75(4), 385–407.

    Article  CAS  PubMed  Google Scholar 

  • Blomberg, S. P., Garland, T., & Ives, A. R. (2003). Testing for phylogenetic signal in comparative data: Behavioral traits are more labile. Evolution, 57(4), 717–745.

    Article  PubMed  Google Scholar 

  • Bond, J. E., Garrison, N. L., Hamilton, C. A., Godwin, R. L., Hedin, M., & Agnarsson, I. (2014). Phylogenomics resolves a spider backbone phylogeny and rejects a prevailing paradigm for orb web evolution. Current Biology, 24(15), 1765–1771. doi:10.1016/j.cub.2014.06.034.

    Article  CAS  PubMed  Google Scholar 

  • Bonduriansky, R. (2006). Convergent evolution of sexual shape dimorphism in diptera. Journal of Morphology, 267(5), 602–611.

    Article  PubMed  Google Scholar 

  • Bonnet, X., Delmas, V., El-Mouden, H., Slimani, T., Sterijovski, B., & Kuchling, G. (2010). Is sexual body shape dimorphism consistent in aquatic and terrestrial chelonians? Zoology, 113(4), 213–220. doi:10.1016/j.zool.2010.03.001.

    Article  PubMed  Google Scholar 

  • Bonnet, X., Lagarde, F., Henen, B. T., Corbin, J., Nagy, K. A., Naulleau, G., et al. (2001). Sexual dimorphism in steppe tortoises (Testudo horsfieldii): Influence of the environment and sexual selection on body shape and mobility. Biological Journal of the Linnean Society, 72(3), 357–372. doi:10.1111/j.1095-8312.2001.tb01323.x.

    Article  Google Scholar 

  • Brooks, M. J. (1991). The ontogeny of sexual dimorphism: Quantitative models and a case study in labrisomid blennies (Teleostei: Paraclinus). Systematic Biology, 40(3), 271–283.

    Article  Google Scholar 

  • Bruce, M. J., Heiling, A. M., & Herberstein, M. E. (2005). Spider signals: Are web decorations visible to birds and bees? Biology Letters, 1(3), 299–302.

    Article  PubMed Central  PubMed  Google Scholar 

  • Butler, M. A., & Losos, J. B. (2002). Multivariate sexual dimorphism, sexual selection, and adaptation in Greater Antillean Anolis lizards. Ecological Monographs, 72(4), 541–559.

    Article  Google Scholar 

  • Cheng, R. C., & Kuntner, M. (2014). Phylogeny suggests nondirectional and isometric evolution of sexual size dimorphism in argiopine spiders. Evolution, 68(10), 2861–2872. doi:10.1111/evo.12504.

    Article  PubMed  Google Scholar 

  • Cheng, R. C., & Tso, I. M. (2007). Signaling by decorating webs: Luring prey or deterring predators? Behavioral Ecology, 18(6), 1085–1091. doi:10.1093/beheco/arm081.

    Article  Google Scholar 

  • Cheng, R. C., Yang, E. C., Lin, C. P., Herberstein, M. E., & Tso, I. M. (2010). Insect form vision as one potential shaping force of spider web decoration design. Journal of Experimental Biology, 213(5), 759–768. doi:10.1242/jeb.037291.

    Article  PubMed  Google Scholar 

  • Coddington, J. A., Hormiga, G., & Scharff, N. (1997). Giant female or dwarf male spiders? Nature, 385, 687–688.

    Article  CAS  Google Scholar 

  • Cox, R. M., Skelly, S. L., & John-Alder, H. B. (2003). A comparative test of adaptive hypotheses for sexual size dimorphism in lizards. Evolution, 57(7), 1653–1669.

    Article  PubMed  Google Scholar 

  • Cubo, J., Ponton, F., Laurin, M., De Margerie, E., & Castanet, J. (2005). Phylogenetic signal in bone microstructure of sauropsids. Systematic Biology, 54(4), 562–574.

    Article  CAS  PubMed  Google Scholar 

  • Dimitrov, D., Lopardo, L., Giribet, G., Arnedo, M. A., Álvarez-Padilla, F., & Hormiga, G. (2012). Tangled in a sparse spider web: Single origin of orb weavers and their spinning work unravelled by denser taxonomic sampling. Proceedings of the Royal Society B: Biological Sciences, 279(1732), 1341–1350. doi:10.1098/rspb.2011.2011.

    Article  PubMed Central  PubMed  Google Scholar 

  • Eberhard, W. G. (1982). Beetle horn dimorphism: Making the best of a bad lot. American Naturalist, 119, 420–426.

    Article  Google Scholar 

  • Elgar, M. A. (1991). Sexual cannibalism, size dimorphism, and courtship behavior in orb-weaving spiders (Araneidae). Evolution, 45(2), 444–448.

    Article  Google Scholar 

  • Elgar, M. A., Allan, R. A., & Evans, T. A. (1996). Foraging strategies in orb-spinning spiders: Ambient light and silk decorations in Argiope aetherea Walckenaer (Araneae: Araneoidea). Austral Ecology, 21(4), 464–467.

    Article  Google Scholar 

  • Elgar, M. A., & Jebb, M. (1999). Nest provisioning in the mud-dauber wasp Sceliphron laetum (F. Smith): Body mass and taxa specific prey selection. Behaviour, 136(2), 147–159.

    Article  Google Scholar 

  • Emlen, D. J., Marangelo, J., Ball, B., & Cunningham, C. W. (2005). Diversity in the weapons of sexual selection: horn evolution in the beetle genus Onthophagus (Coleoptera: Scarabaeidae). Evolution, 59(5), 1060–1084. doi:10.1111/j.0014-3820.2005.tb01044.x.

    Article  CAS  PubMed  Google Scholar 

  • Fairbairn, D. J. (1997). Allometry for sexual size dimorphism: Pattern and process in the coevolution of body size in males and females. Annual Review of Ecology and Systematics, 28, 659–687.

    Article  Google Scholar 

  • Foelix, R. F. (2011). Biology of spiders (3rd ed.). New York: Oxford University Press.

    Google Scholar 

  • Fromhage, L. (2012). Mating unplugged: A model for the evolution of mating plug (dis-)placement. Evolution, 66(1), 31–39.

    Article  PubMed  Google Scholar 

  • Garland, T., Dickerman, A. W., Janis, C. M., & Jones, J. A. (1993). Phylogenetic analysis of covariance by computer simulation. Systematic Biology, 42(3), 265–292. doi:10.1093/sysbio/42.3.265.

    Article  Google Scholar 

  • Gidaszewski, N. A., Baylac, M., & Klingenberg, C. P. (2009). Evolution of sexual dimorphism of wing shape in the Drosophila melanogaster subgroup. BMC Evolutionary Biology, 9(1), 110.

    Article  PubMed Central  PubMed  Google Scholar 

  • Goodman, B. A., Hudson, S. C., Isaac, J. L., & Schwarzkopf, L. (2009). The evolution of body shape in response to habitat: Is reproductive output reduced in flat lizards. Evolution, 63(5), 1279–1291. doi:10.1111/j.1558-5646.2009.00621.x.

    Article  PubMed  Google Scholar 

  • Greenberg, R., & Olsen, B. (2010). Bill size and dimorphism in tidal-marsh sparrows: Island-like processes in a continental habitat. Ecology, 91(8), 2428–2436.

    Article  PubMed  Google Scholar 

  • Harmon, L. J., Weir, J. T., Brock, C. D., Glor, R. E., & Challenger, W. (2008). GEIGER: Investigating evolutionary radiations. Bioinformatics, 24(1), 129–131.

    Article  CAS  PubMed  Google Scholar 

  • Head, G. (1995). Selection on fecundity and variation in the degree of sexual size dimorphism among spider species (Class Araneae). Evolution, 49, 776–781.

    Article  Google Scholar 

  • Herberstein, M. E., Wignall, A. E., Nessler, S. H., Harmer, A. M. T., & Schneider, J. M. (2012). How effective and persistent are fragments of male genitalia as mating plugs? Behavioral Ecology, 23(5), 1140–1145.

    Article  Google Scholar 

  • Higgins, L. E. (1992). Developmental plasticity and fecundity in the orb-weaving spider Nephila clavipes. Journal of Arachnology, 20(2), 94–106. doi:10.2307/3705773.

    Google Scholar 

  • Hormiga, G., Scharff, N., & Coddington, J. (2000). The phylogenetic basis of sexual size dimorphism in orb-weaving spiders (Araneae, Orbiculariae). Systematic Biology, 49(3), 435–462.

    Article  CAS  PubMed  Google Scholar 

  • Kaddour, K. B., El Mouden, E. H., Slimani, T., Bonnet, X., & Lagarde, F. (2008). Sexual dimorphism in the Greek tortoise: A test of the body shape hypothesis. Chelonian Conservation and Biology, 7(1), 21–27. doi:10.2744/CCB-0649.1.

    Article  Google Scholar 

  • Kaliontzopoulou, A., Carretero, M. A., & Llorente, G. A. (2007). Multivariate and geometric morphometrics in the analysis of sexual dimorphism variation in Podarcis lizards. Journal of Morphology, 268(2), 152–165.

    Article  PubMed  Google Scholar 

  • Kaliontzopoulou, A., Carretero, M. A., & Llorente, G. A. (2008). Head shape allometry and proximate causes of head sexual dimorphism in Podarcis lizards: Joining linear and geometric morphometrics. Biological Journal of the Linnean Society, 93(1), 111–124.

    Article  Google Scholar 

  • Kembel, S. W., Cowan, P. D., Helmus, M. R., Cornwell, W. K., Morlon, H., Ackerly, D. D., et al. (2010). Picante: R tools for integrating phylogenies and ecology. Bioinformatics, 26(11), 1463–1464.

    Article  CAS  PubMed  Google Scholar 

  • Kitano, J., Spoljaric, M. A., & Reimchen, T. E. (2008). Habitat-dependent reduction of sexual dimorphism in geometric body shape of Haida Gwaii threespine stickleback. Biological Journal of the Linnean Society, 95(3), 505–516. doi:10.1111/j.1095-8649.2011.03161.x.

    Article  Google Scholar 

  • Kumschick, S., Fronzek, S., Entling, M. H., & Nentwig, W. (2011). Rapid spread of the wasp spider Argiope bruennichi across Europe: A consequence of climate change? Climatic Change, 109(3–4), 319–329. doi:10.1007/s10584-011-0139-0.

    Article  Google Scholar 

  • Kuntner, M., Agnarsson, I., & Li, D. (2015). The eunuch phenomenon: Adaptive evolution of genital emasculation in sexually dimorphic spiders. Biological Reviews, 90, 279–296. doi:10.1111/brv.12109.

    Article  PubMed  Google Scholar 

  • Kuntner, M., & Coddington, J. A. (2009). Discovery of the largest orbweaving spider species: The evolution of gigantism in Nephila. PLoS ONE, 4(10), e7516. doi:10.1371/journal.pone.0007516.

    Article  PubMed Central  PubMed  Google Scholar 

  • Kuntner, M., & Elgar, M. A. (2014). Evolution and maintenance of sexual size dimorphism: Aligning phylogenetic and experimental evidence. Frontiers in Ecology and Evolution, 2, 26. doi:10.3389/fevo.2014.00026.

    Article  Google Scholar 

  • Levi, H. W. (1983). The orb-weaver genera Argiope, Gea, and Neogea from the Western Pacific region (Araneae: Araneidae, Argiopinae). Bulletin of the Museum of Comparative Zoology, 150(5), 247–338.

    Google Scholar 

  • Levi, H. W. (2004). Comments and new records for the American genera Gea and Argiope with the description of a new species (Araneae: Araneidae). Bulletin of the Museum of Comparative Zoology, 158(2), 47–66.

    Article  Google Scholar 

  • Maddison, W. P., & Maddison, D. R. (2014). Mesquite: A modular system for evolutionary analysis. Version 3.0. http://mesquiteproject.org

  • Minton, R. L., & Wang, L. L. (2011). Evidence of sexual shape dimorphism in Viviparus (Gastropoda: Viviparidae). Journal of Molluscan Studies,. doi:10.1093/mollus/eyr014.

    Google Scholar 

  • Moya-Laraño, J., Vinković, D., Allard, C., & Foellmer, M. W. (2009). Optimal climbing speed explains the evolution of extreme sexual size dimorphism in spiders. Journal of Evolutionary Biology, 22(5), 954–963.

    Article  PubMed  Google Scholar 

  • Nessler, S. H., Uhl, G., & Schneider, J. M. (2009). Sexual cannibalism facilitates genital damage in Argiope lobata (Araneae: Araneidae). Behavioral Ecology and Sociobiology, 63(3), 355–362.

    Article  Google Scholar 

  • Olsson, M., Shine, R., Wapstra, E., Ujvari, B., & Madsen, T. (2002). Sexual dimorphism in lizard body shape: The roles of sexual selection and fecundity selection. Evolution, 56(7), 1538–1542.

    Article  PubMed  Google Scholar 

  • Pagel, M. (1997). Inferring evolutionary processes from phylogenies. Zoologica Scripta, 26(4), 331–348.

    Article  Google Scholar 

  • Pagel, M. (1999). Inferring the historical patterns of biological evolution. Nature, 401(6756), 877–884.

    Article  CAS  PubMed  Google Scholar 

  • Paradis, E., & Claude, J. (2002). Analysis of comparative data using generalized estimating equations. Journal of Theoretical Biology, 218(2), 175–185. doi:10.1006/jtbi.2002.3066.

    Article  PubMed  Google Scholar 

  • Paradis, E., Claude, J., & Strimmer, K. (2004). APE: Analyses of phylogenetics and evolution in R language. Bioinformatics, 20(2), 289–290.

    Article  CAS  PubMed  Google Scholar 

  • Pekár, S. (2014). Comparative analysis of passive defences in spiders (Araneae). Journal of Animal Ecology, 83(4), 779–790. doi:10.1111/1365-2656.12177.

    Article  Google Scholar 

  • Prenter, J., Montgomery, W. I., & Elwood, R. W. (1997). Sexual dimorphism in northern temperate spiders: Implications for the differential mortality model. Journal of Zoology, 243(2), 341–349.

    Article  Google Scholar 

  • Preziosi, R. F., Fairbairn, D. J., Roff, D. A., & Brennan, J. M. (1996). Body size and fecundity in the waterstrider Aquarius remigis: A test of Darwin’s fecundity advantage hypothesis. Oecologia, 108(3), 424–431.

    Article  Google Scholar 

  • Price, T. D. (1984). The evolution of sexual size dimorphism in Darwin’s finches. American Naturalist, 23, 500–518.

    Article  Google Scholar 

  • Rao, D., Webster, M., Heiling, A. M., Bruce, M. J., & Herberstein, M. E. (2009). The aggregating behaviour of Argiope radon, with special reference to web decorations. Journal of Ethology, 27(1), 35–42.

    Article  Google Scholar 

  • Revell, L. J. (2011). Phytools: Phylogenetic tools for comparative biology (and other things). R Package.

  • Revell, L. J., Johnson, M. A., Schulte, J. A., Kolbe, J. J., & Losos, J. B. (2007). A phylogenetic test for adaptive convergence in rock-dwelling lizards. Evolution, 61(12), 2898–2912.

    Article  PubMed  Google Scholar 

  • Scharf, I., & Meiri, S. (2013). Sexual dimorphism of heads and abdomens: Different approaches to ‘being large’ in female and male lizards. Biological Journal of the Linnean Society, 110(3), 665–673. doi:10.1111/bij.12147.

    Article  Google Scholar 

  • Scharff, N., & Coddington, J. A. (1997). A phylogenetic analysis of the orb-weaving spider family Araneidae (Arachnida, Araneae). Zoological Journal of the Linnean Society, 120(4), 355–434. doi:10.1111/j.1096-3642.1997.tb01281.x.

    Article  Google Scholar 

  • Schwarzkopf, L. (2005). Sexual dimorphism in body shape without sexual dimorphism in body size in water skinks (Eulamprus quoyii). Herpetologica, 61(2), 116–123. doi:10.1655/04-66.

    Article  Google Scholar 

  • Shine, R. (1989). Ecological causes for the evolution of sexual dimorphism: A review of the evidence. Quarterly Review of Biology, 64, 419–461.

    Article  CAS  PubMed  Google Scholar 

  • Spoljaric, M. A., & Reimchen, T. E. (2008). Habitat-dependent reduction of sexual dimorphism in geometric body shape of Haida Gwaii threespine stickleback. Biological Journal of the Linnean Society, 95(3), 505–516.

    Article  Google Scholar 

  • Temeles, E. J., Miller, J. S., & Rifkin, J. L. (2010). Evolution of sexual dimorphism in bill size and shape of hermit hummingbirds (Phaethornithinae): A role for ecological causation. Philosophical Transactions of the Royal Society B: Biological Sciences, 365(1543), 1053–1063. doi:10.1098/rstb.2009.0284.

    Article  Google Scholar 

  • Tso, I. M. (2004). The effect of food and silk reserve manipulation on decoration-building of Argiope aetheroides. Behaviour, 141(5), 603–616.

    Article  Google Scholar 

  • Valenzuela, N., Adams, D. C., Bowden, R. M., & Gauger, A. C. (2004). Geometric morphometric sex estimation for hatchling turtles: A powerful alternative for detecting subtle sexual shape dimorphism. Copeia, 2004(4), 735–742.

    Article  Google Scholar 

  • Vollrath, F., & Parker, G. A. (1992). Sexual dimorphism and distorted sex ratios in spiders. Nature, 360, 156–159.

    Article  Google Scholar 

  • Walter, A., & Elgar, M. A. (2012). The evolution of novel animal signals: Silk decorations as a model system. Biological Reviews, 87(3), 686–700. doi:10.1111/j.1469-185X.

    Article  PubMed  Google Scholar 

  • Welke, K. W., & Schneider, J. M. (2012). Sexual cannibalism benefits offspring survival. Animal Behaviour, 83(1), 201–207. doi:10.1016/j.anbehav.2011.10.027.

    Article  Google Scholar 

  • Zhang, L., Han, L., Wang, Y., Zhao, T., Bao, X., & Nakagaki, M. (2013). The variability of mechanical properties and molecular conformation among different spider dragline fibers. Fibers and Polymers, 14(7), 1190–1195. doi:10.1007/s12221-013-1190-4.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank D. Li, J. Schneider, X. Xu, I. Agnarsson, I. M. Tso, P. Jäger, W. Chotwong, J. P. Huang, C. P. Lin, Y. C. Su, V. Settepani, S. Huber, M. Gregorič, G. Uhl, E. A. Yağmur, M. A. Herberstein, and J. N. Huang for their help with material for size measurement and molecular work. We also thank C. P. Liao for helping on statistics and EZ Lab members for various support: N. Vidergar, T. Lokovšek and S. Kralj-Fišer. Our paper was independently reviewed by Axios Review, and we thank Tim Vines, Matthew Symonds and three anonymous reviewers for their feedback. This work was supported by the Slovenian Research Agency (P1-10236 to MK and a Young Researcher fellowship to RCC).

Conflict of interest

The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ren-Chung Cheng or Matjaž Kuntner.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheng, RC., Kuntner, M. Disentangling the Size and Shape Components of Sexual Dimorphism. Evol Biol 42, 223–234 (2015). https://doi.org/10.1007/s11692-015-9313-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11692-015-9313-z

Keywords

Navigation