Skip to main content
Log in

Latitudinal Variation in Starvation Resistance is Explained by Lipid Content in Natural Populations of Drosophila melanogaster

  • Research Article
  • Published:
Evolutionary Biology Aims and scope Submit manuscript

Abstract

One of the most common environmental stressors is a shortage or suboptimal quality of food, thus all animals deal with periods of starvation. In the present study we examine variation in starvation resistance, longevity and body lipid content and the correlations between traits along an environmental gradient using isofemale lines recently derived from natural populations of Drosophila melanogaster from South America. The use of isofemale lines and controlled rearing laboratory conditions allows us to investigate within and among population components of genetic variation and the potential associations among starvation resistance, longevity and body lipid content. All these traits were analyzed separately in females and males, improving our understanding of sexual dimorphism. Our results revealed significant differences among populations in starvation resistance and longevity. Actually, the opposing latitudinal cline detected for starvation resistance suggests that natural selection played an essential role in shaping the pattern of geographic variation in this trait. Moreover, we also detected a positive relationship between starvation resistance and body lipid content in both sexes, providing evidence for a physiological and/or evolutionary association between these traits. Conversely, starvation resistance was not correlated with longevity indicating that these traits might be enabled to evolve independently. Finally, our study reveals that there is abundant within population genetic variation for all traits that may be maintained by sex-specific effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Aguila, J. R., Suszko, J., Gibbs, A. G., & Hoshizaki, D. K. (2007). The role of larval fat cells in adult Drosophila melanogaster. Journal of Experimental Biology, 210(6), 956–963.

    Article  PubMed  Google Scholar 

  • Archer, M. A., Phelan, J. P., Beckman, K. A., & Rose, M. R. (2003). Breakdown in correlations during laboratory evolution. II. Selection on stress resistance in Drosophila populations. Evolution, 57(3), 536–543.

    PubMed  Google Scholar 

  • Arrese, E. L., & Soulages, J. L. (2010). Insect fat body: Energy metabolism and regulation. Annual Review of Entomology, 55, 207–225.

    Article  PubMed  CAS  Google Scholar 

  • Arthur, A. L., Weeks, A. R., & Sgrò, C. M. (2008). Investigating latitudinal clines for life history and stress resistance traits in Drosophila simulans from eastern Australia. Journal of Evolutionary Biology, 21(6), 1470–1479.

    PubMed  CAS  Google Scholar 

  • Ayroles, J. F., Carbone, M. A., Stone, E. A., Jordan, K. W., Lyman, R. F., et al. (2009). Systems genetics of complex traits in Drosophila melanogaster. Nature Genetics, 41(3), 299–307.

    Article  PubMed  CAS  Google Scholar 

  • Baldal, E. G., Bbrakefield, P. M., & Zwaan, B. J. (2006). Multitrait evolution in lines of Drosophila melanogaster selected for increased starvation resistance: The role of metabolic rate and implications for the evolution of longevity. Evolution, 60(7), 1435–1444.

    PubMed  Google Scholar 

  • Ballard, W. O., Melvin, R. G., & Simpson, S. J. (2008). Starvation resistance is positively correlated with body lipid proportion in five wild caught Drosophila simulans populations. Journal of Insect Physiology, 54(9), 1371–1376.

    Article  PubMed  CAS  Google Scholar 

  • Bjedov, I., Toivonen, J. M., Kerr, F., Slack, C., Jacobson, J., Foley, A., et al. (2010). Mechanisms of life span extension by rapamycin in the fruit fly Drosophila melanogaster. Cell Metabolism, 11(1), 35–46.

    Article  PubMed  CAS  Google Scholar 

  • Boucher, L., & Huignard, J. (1987). Transfer of male secretions from the spermatophore to the female insect Caryedon serratus (OI.): Analysis of the possible trophic role of these secretions. Journal of Insect Physiology, 33(12), 949–957.

    Article  CAS  Google Scholar 

  • Boulétreau-Merle, J., & Fouillet, P. (2002). How to overwinter and be a founder: Egg-retention phenotypes and mating status in Drosophila melanogaster. Evolutionary Ecology, 16(4), 309–332.

    Article  Google Scholar 

  • Britton, J. S., Lockwood, W. K., Li, L., Cohen, S. M., & Edgar, B. A. (2002). Drosophila’s insulin/pi3-kinase pathway coordinates cellular metabolism with nutritional conditions. Developmental Cell, 2(2), 239–249.

    Article  PubMed  CAS  Google Scholar 

  • Butlin, R. K., Woodhatch, C. W., & Hewitt, G. M. (1987). Male spermatophore investment increases female fecundity in a grasshopper. Evolution, 41(1), 221–225.

    Article  Google Scholar 

  • Butterworth, F. M., Bodenstein, D., & King, R. C. (1965). Adipose tissue of Drosophila melanogaster. I. An experimental study of larval fat body. Journal of Experimental Zoology, 158(2), 141–153.

    Article  PubMed  CAS  Google Scholar 

  • Carvalho, G. B., Kapahi, P., Anderson, D. J., & Benzer, S. (2006). Allocrine modulation of feeding behavior by the sex peptide of Drosophila. Current Biology, 16(7), 692–696.

    Article  PubMed  CAS  Google Scholar 

  • Chippindale, A. K., Chu, T. J. F., & Rose, M. R. (1996). Complex trade-offs and the evolution of starvation resistance in Drosophila melanogaster. Evolution, 50(2), 753–766.

    Article  Google Scholar 

  • Colombani, J., Raisin, S., Pantalacci, S., Radimerski, T., Montagne, J., & Leopold, P. (2003). A nutrient sensor mechanism controls Drosophila growth. Cell, 114(6), 739–749.

    Article  PubMed  CAS  Google Scholar 

  • De Luca, M., Roshina, N. V., Geiger-Thornsberry, G. L., Lyman, R. F., Pasyukova, E. G., & Mackay, T. F. C. (2003). Dopa decarboxylase (Ddc) affects variation in Drosophila longevity. Nature Genetics, 34(4), 429–433.

    Article  PubMed  Google Scholar 

  • Edvardsson, M. (2007). Female Callosobruchus maculatus mate when they are thirsty: Resource-rich ejaculates as mating effort in a beetle. Animal Behaviuor, 74(2), 183–188.

    Article  Google Scholar 

  • Fairbairn, D. J., Blanckenhorn, W. U., & Székely, T. (2007). Sex size and gender roles: Evolutionary studies of sexual dimorphism. Oxford: Oxford University Press.

    Book  Google Scholar 

  • Falconer, D. S. (1952). The problem of environment and selection. American Naturalist, 86(830), 293–298.

    Article  Google Scholar 

  • Fallis, L. C., Fanara, J. J., & Morgan, T. J. (2011). Genetic variation in heat-stress tolerance among South American Drosophila populations. Genetica, 139(10), 1331–1337.

    Article  PubMed  Google Scholar 

  • Folguera, G., Ceballos, S., Spezzi, L., Fanara, J. J., & Hasson, E. (2008). Clinal variation in developmental time and viability and the response to thermal treatments in two species of Drosophila. Biological Journal of the Linnean Society, 95(2), 233–245.

    Article  Google Scholar 

  • Force, A. G., Staples, T., Soliman, S., & Arking, R. (1995). Comparative biochemical and stress analysis of genetically selected Drosophila strains with different longevities. Developmental Genetic, 17(4), 340–351.

    Article  CAS  Google Scholar 

  • Goenaga, J., Fanara, J. J., & Hasson, E. (2010). A quantitative genetic study of starvation resistance at different geographic scales in natural populations of Drosophila melanogaster. Genetic Research, 92(4), 253–259.

    Article  Google Scholar 

  • Goenaga, J., Fanara, J. J., & Hasson, E. (2012). The effect of mating on starvation resistance in natural populations of Drosophila melanogaster. Evolutionary Ecology, 26(4), 813–823.

    Article  Google Scholar 

  • Griffiths, J. A., Schiffer, M., & Hoffmann, A. A. (2005). Clinal variation and laboratory adaptation in the rainforest species Drosophila birchii for stress resistance wing size wing shape and development time. Journal of Evolutionary Biology, 18(1), 213–222.

    PubMed  CAS  Google Scholar 

  • Hahn, D. A., & Denlinger, D. L. (2007). Meeting the energetic demands of insect diapause: Nutrient storage and utilization. Journal of Insect Physiology, 53(8), 760–773.

    Article  PubMed  CAS  Google Scholar 

  • Hallas, R., Schiffer, M., & Hoffmann, A. A. (2002). Clinal variation in Drosophila serrata for stress resistance and body size. Genetics Research, 79(2), 141–148.

    Article  Google Scholar 

  • Hansen, M., Flatt, T., & Aguilaniu, H. (2013). Reproduction, fat metabolism, and life span: What is the connection? Cell Metabomis, 17(8), 10–19.

    Article  CAS  Google Scholar 

  • Harbison, S. T., Chang, S., Kamdar, K. P., & Mackay, T. F. C. (2005). Quantitative genomics of starvation stress resistance in Drosophila. Genome Biology, 6, R36. doi:10.1186/gb-2005-6-4-r36.

    Article  PubMed  Google Scholar 

  • Harbison, S. T., Yamamoto, A. H., Fanara, J. J., Norga, K. K., & Mackay, T. F. C. (2004). Quantitative trait loci affecting starvation resistance in Drosophila melanogaster. Genetics, 166(4), 1807–1823.

    Article  PubMed  CAS  Google Scholar 

  • Harshman, L. G., & Hoffmann, A. A. (2000). Laboratory selection experiments on life history and stress-related traits in Drosophila: What do they really tell us? Trends in Ecology & Evolution, 15(1), 32–36.

    Article  Google Scholar 

  • Harshman, L. G., Hoffmann, A. A., & Clark, A. G. (1999a). Selection for starvation resistance in Drosophila melanogaster: Physiological correlates enzyme activities and multiple stress responses. Journal of Evolutionary Biology, 12(2), 370–379.

    CAS  Google Scholar 

  • Harshman, L. G., Moore, K. M., Sty, M. A., & Magwire, M. M. (1999b). Stress resistance and longevity in selected lines of Drosophila melanogaster. Neurobiology Aging, 20(5), 521–529.

    Article  CAS  Google Scholar 

  • Harshman, L. G., & Schmid, J. L. (1998). Evolution of starvation resistance in Drosophila melanogaster: Aspects of metabolism and counter-impact selection. Evolution, 52(6), 1679–1685.

    Article  Google Scholar 

  • Hoffmann, A. A., Anderson, A., & Hallas, R. (2002). Opposing clines for high and low temperature resistance in Drosophila melanogaster. Ecoogy Letters, 5(5), 614–618.

    Article  Google Scholar 

  • Hoffmann, A. A., Hallas, R., Anderson, A. R., & Telonis-Scott, M. (2005a). Evidence for a robust sex-specific trade-off between cold resistance and starvation resistance in Drosophila melanogaster. Journal of Evolutionary Biology, 18(4), 804–810.

    PubMed  CAS  Google Scholar 

  • Hoffmann, A. A., Hallas, R., Sinclair, C., & Mitrovski, P. (2001). Levels of variation in stress resistance in Drosophila among strains local populations and geographic regions: Patterns for desiccation starvation cold resistance and associated traits. Evolution, 55(8), 1621–1630.

    PubMed  CAS  Google Scholar 

  • Hoffmann, A. A., & Parsons, P. A. (1991). Evolutionary genetics and environmental stress. New York: Oxford University Press.

    Google Scholar 

  • Hoffmann, A. A., Shirriffs, J., & Scott, M. (2005b). Relative importance of plastic vs genetic factors in adaptive differentiation: Geographical variation for stress resistance in Drosophila melanogaster from eastern Australia. Functional Ecology, 19(2), 222–227.

    Article  Google Scholar 

  • Ivy, T. M., Johnson, J. C., & Sakaluk, S. K. (1999). Hydration benefits to courtship feeding in crickets. Proceedings of the Royal Society of London. Series B, 266(1428), 1523–1527.

    Article  Google Scholar 

  • Izquierdo, J. I. (1991). How does Drosophila melanogaster overwinter? Entomologia Experimentalis et Applicata, 59(1), 51–58.

    Article  Google Scholar 

  • Jumbo-Lucioni, P., Ayroles, J. F., Chambers, M. M., Jordan, K. W., Leips, J., Mackay, T. F. C., et al. (2010). Systems genetics analysis of body weight and energy metabolism traits in Drosophila melanogaster. BMC Genomics, 11, 297–310.

    Article  PubMed  Google Scholar 

  • Kapahi, P., Zid, B. M., Harper, T., Koslover, D., Sapin, V., & Benzer, S. (2004). Regulation of lifespan in Drosophila by modulation of genes in the TOR signaling pathway. Current Biology, 14(10), 885–890.

    Article  PubMed  CAS  Google Scholar 

  • Karan, D., Dahiya, N., Munjal, A. K., Gibert, P., Moreteau, B., Parkash, R., et al. (1998). Desiccation and starvation tolerance of adult Drosophila: Opposite latitudinal clines in natural populations of three different species. Evolution, 52(3), 825–831.

    Article  Google Scholar 

  • Karan, D., & Parkash, R. (1998). Desiccation tolerance and starvation resistance exhibit opposite latitudinal clines in Indian geographical populations of Drosophila kikkawai. Ecological Entomology, 23(4), 391–396.

    Article  Google Scholar 

  • Kenny, M., Wilton, A., & Ballard, W. O. (2008). Seasonal trade-off between starvationresistance and cold resistance in temperate wild-caught Drosophila simulans. Australian Journal of Entomology, 47(1), 20–23.

    Article  Google Scholar 

  • Lavagnino, N. J., Anholt, R. R., & Fanara, J. J. (2008). Variation in genetic architecture of olfactory behaviour among wild-derived populations of Drosophila melanogaster. Journal of Evolutionary Biology, 21(4), 988–996.

    PubMed  CAS  Google Scholar 

  • Lee, G. H., & Park, J. H. (2004). Hemolymph sugar homeostasis and starvation-induced hyperactivity affected by genetic manipulations of the adipokinetic hormone encoding gene in Drosophila melanogaster. Genetics, 167(1), 311–323.

    Article  PubMed  CAS  Google Scholar 

  • Lynch, M., & Walsh, B. (1998). Genetics and analysis of quantitative traits. Sunderland: Sinauer.

    Google Scholar 

  • Magwire, M. M., Yamamoto, A., Carbone, M. A., Roshina, N. V., Symonenko, A. V., Pasyukova, E. G., et al. (2010). Quantitative and molecular genetic analyses of mutations increasing Drosophila life span. PLoS Genetics, 6(7), e1001037.

    Article  PubMed  Google Scholar 

  • Markow, T. A., & O’Grady, P. M. (2008). Reproductive ecology of Drosophila. Functional Ecology, 22(5), 747–759.

    Article  Google Scholar 

  • Mensch, J., Carreira, V., Lavagnino, N., Goenaga, J., Folguera, G., Hasson, E., et al. (2010). Stage-specific effects of Candidate heterochronic genes on variation in developmental time along an altitudinal cline of Drosophila melanogaster. PLoS ONE, 5(6), e11229.

    Article  PubMed  Google Scholar 

  • Mitrovski, P., & Hoffmann, A. A. (2001). Postponed reproduction as an adaptation to winter conditions in Drosophila melanogaster: Evidence for clinal variation under semi-natural conditions. Proceedings of the Royal Society. B, 268(1481), 2163–2168.

    Article  PubMed  CAS  Google Scholar 

  • Muir, W. M., Nyquist, Y., & Xu, S. (1992). Alternative partitioning of the genotype by environment interaction. Theoretical and Applied Genetics, 84, 193–200.

    Article  PubMed  CAS  Google Scholar 

  • Parkash, R., & Aggarwal, D. D. (2012). Trade-off of energy metabolites as well as body color phenotypes for starvation and desiccation resistance in montane populations of Drosophila melanogaster. Comparative Biochemistry and Physiology Part A, 161(2), 102–113.

    Article  CAS  Google Scholar 

  • Parkash, R., & Munjal, A. K. (2000). Evidence of independent climatic selection for desiccation and starvation tolerance in Indian tropical populations of Drosophila melanogaster. Evolutionary Ecology Research, 2(5), 685–699.

    Google Scholar 

  • Pasyukova, E. G., Roshina, N. V., & Mackay, T. F. C. (2004). Shuttle craft: A candidate quantitative trait gene for Drosophila lifespan. Aging Cell, 3(5), 297–307.

    Article  PubMed  CAS  Google Scholar 

  • Phelan, J. P., Archer, M. A., Beckman, K. A., Chippindale, A. K., Nusbaum, T. J., & Rose, M. R. (2003). Breakdown in correlations during laboratory evolution. I. Comparative analyses of Drosophila populations. Evolution, 57(3), 527–535.

    PubMed  Google Scholar 

  • Quinn, G. P., & Keough, M. J. (2002). Experimental Design and Data Analysis for Biologists. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Randall, D., Burggren, W., & French, K. (1997). Eckert animal physiology: Mechanisms and adaptations (4th ed.). New York: W.H. Freeman Company.

    Google Scholar 

  • Rice, W. R., & Chippindale, A. K. (2002). The evolution of hybrid infertility: Perpetual coevolution between gender-specific and sexual antagonistic genes. Genetica, 116(2–3), 179–188.

    Article  PubMed  CAS  Google Scholar 

  • Rion, S., & Kawecki, T. J. (2007). Evolutionary biology of starvation resistance: What we have learned from Drosophila. Journal of Evolutionary Biology, 20(5), 1655–1664.

    PubMed  CAS  Google Scholar 

  • Robertson, A. (1959). The sampling variance of the genetic correlation coefficient. Biometric, 15(3), 469–485.

    Article  Google Scholar 

  • Robinson, S. J. W., Zwaan, B., & Partridge, L. (2000). Starvation resistance and adult body composition in a latitudinal cline of Drosophila melanogaster. Evolution, 54(5), 1819–1824.

    PubMed  CAS  Google Scholar 

  • Rose, M. R., Vu, L. N., Park, S. U., & Graves, J. L. (1992). Selection on stress resistance increases longevity in Drosophila melanogaster. Experimental Gerontology, 27(2), 241–250.

    Article  PubMed  CAS  Google Scholar 

  • Rush, B., Sandver, S., Bruer, J., Roche, R., Wells, M., & Giebultowicz, J. (2007). Mating increases starvation resistance and decreases oxidative stress resistance in Drosophila melanogaster females. Aging Cell, 6(5), 723–726.

    Article  PubMed  CAS  Google Scholar 

  • Salmon, A. B., Marx, D. B., & Harshman, L. G. (2001). A cost of reproduction in Drosophila melanogaster: Stress susceptibility. Evolution, 55(8), 1600–1608.

    PubMed  CAS  Google Scholar 

  • Schmidt, P. S., Matzkin, L., Ippolito, M., & Eanes, W. F. (2005a). Geographic variation in diapause incidence life-history traits and climatic adaptation in Drosophila melanogaster. Evolution, 59(8), 1721–1732.

    PubMed  Google Scholar 

  • Schmidt, P. S., & Paaby, A. B. (2008). Reproductive diapause and life-history clines in North American populations of Drosophila melanogaster. Evolution, 62(5), 1204–1215.

    Article  PubMed  Google Scholar 

  • Schmidt, P. S., Paaby, A. B., & Heschel, M. S. (2005b). Genetic variance for diapauses expression and associated life histories in Drosophila melanogaster. Evolution, 59(12), 2616–2625.

    PubMed  Google Scholar 

  • Schwasinger-Schmidt, T. E., Kachman, S. D., & Harshman, L. G. (2012). Evolution of starvation resistance in Drosophila melanogaster: Measurement of direct and correlated responses to artificial selection. Journal of Evolutionary Biology, 25(2), 378–387.

    PubMed  CAS  Google Scholar 

  • Service, P. M., Hutchinson, E. W., Mackinley, M. D., & Rose, M. R. (1985). Resistance to environmental stress in Drosophila melanogaster selected for postponed senescence. Physiological Zoology, 58(4), 380–389.

    Google Scholar 

  • Sisodia, S., & Singh, B. N. (2010). Resistance to environmental stress in Drosophila ananassae: Latitudinal variation and adaptation among populations. Journal of Evolutionary Biology, 23(9), 1979–1988.

    Article  PubMed  CAS  Google Scholar 

  • Slack, C., Werz, C., Wieser, D., Alic, N., Foley, A., Stocke, H., et al. (2010). Regulation of lifespan metabolism and stress responses by the Drosophila SH2B protein Lnk. PLoS Genetics. doi:10.1371/journal.pgen.1000881.

    Google Scholar 

  • StatSoft (2007). Methods and applications. Version 8.0 StatSoft Tulsa.

  • Vieira, C., Pasyukova, E. G., Zeng, A., Hackett, J. B., Lyman, R. F., & Mackay, T. F. C. (2000). Genotype-environment interaction for quantitative trait loci affecting life span in Drosophila melanogaster. Genetics, 154(1), 213–227.

    PubMed  CAS  Google Scholar 

  • Wang, M., Harshman, L. G., & Nuzhdin, S. V. (2005). Quantitative trait loci for lipid content in Drosophila melanogaster. Obesity Research, 13(11), 1891–1897.

    Article  PubMed  CAS  Google Scholar 

  • Wang, M., Lazebny, O., Harshman, L. G., & Nuzhdin, S. V. (2004). Environment-dependent survival of Drosophila melanogaster: A quantitative genetic analysis. Aging Cell, 3(4), 133–140.

    Article  PubMed  CAS  Google Scholar 

  • Wayne, M., Soundararajan, U., & Harshman, L. (2006). Environmental stress and reproduction in Drosophila melanogaster: Starvation resistance ovariole numbers and early age egg production. BMC Evolutionary Biology. doi:10.1186/1471-2148-6-57.

    PubMed  Google Scholar 

  • Zhang, H., Stallock, J. P., Ng, J. C., Reinhard, C., & Neufeld, T. P. (2000). Regulation of cellular growth by the Drosophila target of rapamycin dTOR. Genes & Development, 14(21), 2712–2724.

    Article  CAS  Google Scholar 

  • Ziegler, R., & Van Antwerpen, R. (2006). Lipid uptake by insect oocytes. Insect Biochemistry and Molecular Biology, 36(4), 264–272.

    Article  PubMed  CAS  Google Scholar 

  • Zwaan, B., Bijlsma, R., & Hoekstra, R. F. (1995). Direct selection on life span in Drosophila melanogaster. Evolution, 49(4), 649–659.

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by funding from Consejo Nacional de Investigación Científica y Técnica (CONICET), Agencia Nacional de Investigación Científica y Tecnológica (ANPCyT) and Buenos Aires University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julieta Goenaga.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Goenaga, J., Fanara, J.J. & Hasson, E. Latitudinal Variation in Starvation Resistance is Explained by Lipid Content in Natural Populations of Drosophila melanogaster . Evol Biol 40, 601–612 (2013). https://doi.org/10.1007/s11692-013-9235-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11692-013-9235-6

Keywords

Navigation