Skip to main content
Log in

Stochasticity in Sexual Selection Enables Divergence: Implications for Moth Pheromone Evolution

  • Research Article
  • Published:
Evolutionary Biology Aims and scope Submit manuscript

Abstract

Sexual selection has long been hypothesized to lead to allopatric speciation, and one possible mechanism for this is that its interaction with stochasticity, which perturbs the trait and preference equilibria, can result in different traits being preferred in different populations. Here we specifically examine the role that stochastic changes in sexual selection strength plays in the shift of predominance between pairs of preferences and traits within a single population. We first create a single-locus null model of stochasticity during frequency dependent selection and then compare it to a two-locus population genetic model with stochastic strengths of female preferences for male traits. We find some interesting differences between the two models, primarily that in the two-locus sexual selection model shifts between preference and trait regimes occur more often with both weak and strong preferences, compared to intermediate preference strengths. We discuss the implications of our results for the evolution of pheromone blends and male responses during speciation in moths, a case that seems to match the assumptions of our model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Alatalo, R. V., Carlson, A., & Lundberg, A. (1988). The costs of mate choice in the pied flycatcher. Animal Behaviour, 36, 289–291.

    Article  Google Scholar 

  • Barton, N. H., & Turelli, M. (1991). Natural and sexual selection on many loci. Genetics, 127, 229–255.

    PubMed  CAS  Google Scholar 

  • Bengtsson, B. O., & Lofstedt, C. (2007). Direct and indirect selection in moth pheromone evolution: Population genetical simulations of asymmetric sexual interactions. Biological Journal of the Linnean Society, 90, 117–123.

    Article  Google Scholar 

  • Butlin, R. K., & Trickett, A. J. (1997). Can population genetic simulations help to interpret pheromone evolution? In R. T. Carde & A. K. Minks (Eds.), Insect pheromone research: New directions (pp. 548–562). New York: Chapman and Hall.

    Chapter  Google Scholar 

  • Coyne, J. A., & Orr, H. A. (2004). Speciation. Sunderland, MA, USA: Sinauer Associates.

    Google Scholar 

  • De Jong, M. C. M., & Sabelis, M. W. (1991). Limits to runaway sexual selection: The wallflower paradox. Journal of Evolutionary Biology, 4, 637–655.

    Article  Google Scholar 

  • Foster, S. P., & Ayers, R. H. (1996). Multiple mating and its effects in the lightbrown apple moth, Epiphyas postvittana (Walker). Journal of Insect Physiology, 42, 657–667.

    Article  CAS  Google Scholar 

  • Gascoigne, J., Berec, L., Gregory, S., & Courchamp, F. (2009). Dangerously few liasons: A review of mate-finding allee effects. Population Ecology, 51, 355–372.

    Article  Google Scholar 

  • Gomulkiewicz, R. S., & Hastings, A. (1990). Ploidy and evolution by sexual selection: A comparison of haploid and diploid female choice models near fixation equilibria. Evolution, 44, 757–770.

    Article  Google Scholar 

  • Gotthard, K., Nylin, S., & Wiklund, C. (1999). Mating system evolution in response to search costs in the speckled wood butterfly, Pararge aegeria. Behavioral Ecology and Sociobiology, 45, 424–429.

    Article  Google Scholar 

  • Gould, F., Estock, M., Hillier, N. K., Powell, B., Groot, A. T., Ward, C. M., et al. (2010). Sexual isolation of male moths explained by a single pheromone response QTL containing four odorant receptor genes. Proceedings of the National Academy of Sciences USA, 107, 8660–8665.

    Article  CAS  Google Scholar 

  • Gould, F., Groot, A. T., Vasquez, G. M., & Schal, C. (2009). Sexual communication in Lepidoptera: A need for wedding genetics, biochemistry, and molecular biology, chapter 10. In M. Frantisek & M. R. Goldsmith (Eds.) Molecular biology and genetics of the Lepidoptera. London: Taylor and Francis Group.

  • Greenspoon, P. B., & Otto, S. P. (2009). Evolution by Fisherian sexual selection in diploids. Evolution, 63, 1076–1083.

    Article  PubMed  Google Scholar 

  • Groot, A. T., Santangelo, R. G., Ricci, E., Brownie, C., Gould, F., & Schal, C. (2007). Differential attraction of Heliothis subflexa males to synthetic pheromone lures in eastern US and western Mexico. Journal of Chemical Ecology, 33, 353–368.

    Article  PubMed  CAS  Google Scholar 

  • Hedrick, A. V., & Dill, L. M. (1993). Mate choice by female crickets is influenced by predation risk. Animal Behaviour, 46, 193–196.

    Article  Google Scholar 

  • Heisler, I. L., & Curtsinger, J. W. (1990). Dynamics of sexual selection in diploid populations. Evolution, 44, 1164–1176.

    Article  Google Scholar 

  • Innan, H., & Stephan, W. (2001). Selection intensity against deleterious mutations in RNA secondary structures and rate of compensatory nucleotide substitutions. Genetics, 159, 380–399.

    Google Scholar 

  • Kimura, M. (1954). Process leading to quasi-fixation of genes in natural populations due to random fluctuation of selection intensities. Genetics, 39, 280–295.

    PubMed  CAS  Google Scholar 

  • Kirkpatrick, M. (1982). Sexual selection and the evolution of female choice. Evolution, 36, 1–12.

    Article  Google Scholar 

  • Kirkpatrick, M., & Nuismer, S. L. (2004). Sexual selection can constrain sympatric speciation. Proceedings of the Royal Society of London B, Biological Sciences, 271, 687–693.

    Article  Google Scholar 

  • Lande, R. (1981). Models of speciation by sexual selection on polygenic traits. Proceedings of the National Academy of Science, USA, 78, 3721–3725.

    Article  CAS  Google Scholar 

  • Lenormand, T., Roze, D., & Roussett, F. (2009). Stochasticity in evolution. Trends in Ecology & Evolution, 24, 157–165.

    Article  Google Scholar 

  • Linn, C. E., Young, M. S., Gendle, M., Glover, T. J., & Roelofs, W. L. (1997). Sex pheromone blend discrimination in two races and hybrids of the European core borer moth, Ostrinia nubilalis. Physiological Entomology, 22, 212–223.

    Article  CAS  Google Scholar 

  • Mayr, E. (1942). Systematics and the origin of species. New York: Columbia University Press.

    Google Scholar 

  • McNeil, J. N. (1991). Behavioral ecology of pheromone-mediated communication in moths and its importance in the use of pheromone traps. Annual Review of Entomology, 36, 407–430.

    Article  Google Scholar 

  • Michalakis, Y., & Slatkin, M. (1996). Interaction of selection and recombination in the fixation of negative-epistatic genes. Genetical Research, 67, 257–269.

    Article  PubMed  CAS  Google Scholar 

  • Otto, S. P., Servedio, M. R., & Nuismer, S. L. (2008). Frequency-dependent selection and the evolution of assortative mating. Genetics, 179, 2091–2112.

    Article  PubMed  Google Scholar 

  • Page, K. M., & Nowak, M. A. (2002). Unifying evolutionary dynamics. Journal of Theoretical Biology, 219, 93–98.

    PubMed  Google Scholar 

  • Panhuis, T. M., Butlin, R., Zuk, M., & Tregenza, T. (2001). Sexual selection and speciation. Trends in Ecology & Evolution, 16, 364–371.

    Article  Google Scholar 

  • Phelan, P. L. (1992). Evolution of sex pheromones and the role of asymmetric tracking. In B. D. Roitberg, & M. B. Isman (Eds.) Insect chemical ecology: an evolutionary approach, (pp. 265–314).

  • Phillips, P. C. (1996). Waiting for a compensatory mutation: Phase zero of the shifting-balance process. Genetical Reserach, 67, 271–283.

    Article  CAS  Google Scholar 

  • Proshold, F. I. (1996). Reproductive capacity of laboratory-reared gypsy moths (Lepidoptera: Lymantriidae): Effect of age of female at time of mating. Journal of Economic Entomology, 89, 337–342.

    Google Scholar 

  • Ritchie, M. G. (2007). Sexual selection and speciation. Annual Review of Ecology Evolution and Systematics, 38, 79–102.

    Article  Google Scholar 

  • Roelofs, W. L., & Rooney, A. P. (2003). Molecular genetics and evolution of pheromone biosynthesis in Lepidoptera. Proceedings of the National Academy of Sciences, USA, 100, 9179–9184.

    Article  CAS  Google Scholar 

  • Rutledge, R. A. (1970). The survival of epistatic gene complexes in subdivided populations. Unpublished PhD thesis, Columbia University.

  • Servedio, M. R. (2011). Limits to the evolution of assortative mating by female choice under restricted gene flow. Proceedings of the Royal Society of London, B, Biological Sciences, 278, 179–187.

    Article  Google Scholar 

  • Svensson, M. G. E., Marling, E., & Lofqvist, J. (1998). Mating behavior and reproductive potential in the turnip moth Agrotis segetum (Lepidoptera: Noctuidae). Journal of Insect Behavior, 11, 343–359.

    Article  Google Scholar 

  • Unnithan, G. C., & Paye, S. O. (1991). Mating, longevity, fecundity, and egg fertility of Chilo partellus (Lepidoptera: Pyralidae): effects of delayed or successive matings and their relevance to pheromonal control methods. Environmental Entomology, 20, 150–155.

    Google Scholar 

  • Uyeda, J. C., Arnold, S. J., Hohenlohe, P. A., & Mead, L. S. (2009). Drift promotes speciation by sexual selection. Evolution, 63, 583–594.

    Article  PubMed  Google Scholar 

  • Vickers, R. A. (1997). Effect of delayed mating on oviposition pattern, fecundity and fertility in codling moth, Cydia pomonella (L.) (Lepidoptera: Tortricidae). Australian Journal of Entomology, 36, 179–182.

    Article  Google Scholar 

  • Wright, S. (1931). Evolution in mendelian populations. Genetics, 16, 97–159.

    PubMed  CAS  Google Scholar 

  • Wu, C.-I. (1985). A stochastic simulation study on speciation by sexual selection. Evolution, 39, 66–82.

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank J. Adamson, A. Frame, S. Dhole, J. McKinnon, and two anonymous reviewers for comments on the manuscript and N. Barton, R. Servedio and especially T. Paixão for discussion. We also thank A. Faucci, M.P. Miglietta and F. Santini for the invitation to contribute to this edition. MRS and JTR were funded by NSF DEB 0919018 EB was funded by the NSF REU supplement DEB-1026740.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria R. Servedio.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bergen, E.L., Rowell, J.T., Gould, F. et al. Stochasticity in Sexual Selection Enables Divergence: Implications for Moth Pheromone Evolution. Evol Biol 39, 271–281 (2012). https://doi.org/10.1007/s11692-012-9176-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11692-012-9176-5

Keywords

Navigation