Skip to main content

Advertisement

Log in

Virtual Functional Morphology: Novel Approaches to the Study of Craniofacial Form and Function

  • Synthesis paper
  • Published:
Evolutionary Biology Aims and scope Submit manuscript

Abstract

Recent developments in simulating musculoskeletal functioning in the craniofacial complex using multibody dynamic analysis and finite elements analysis enable comprehensive virtual investigations into musculoskeletal form and function. Because the growth of the craniofacial skeleton is strongly influenced by mechanical functioning, these methods have potential in investigating the normal and abnormal development of the skull: loading history during development can be predicted and bony adaptations to these loads simulated. Thus these methods can be used to predict the impact of altered loading or modifications of skull form early in ontogeny on the subsequent development of structures. Combining functional models with geometric morphometric methods (GMM), which are principally concerned with the study of variations of form, offers the opportunity to examine variations in form during development and the covariations between form and factors such as functional performance. Such a combination of functional models and GMM can potentially be applied in many useful ways, for example: to build and modify functional models, to assess the outcomes of remodelling studies by comparing the results with morphological changes during ontogeny, and to compare the outcomes of finite element analyses within a multivariate framework. Studies using these tools can not only investigate the development of the skull but also the mechanical processes and thus to some degree, behaviours underlying the development of variation among extant and fossil skeletal elements. By bringing together these tools from quite different comparative traditions, a novel and potentially powerful framework for simulation and statistical biomechanical analyses of form and function emerges. This paper reviews these recent developments in the context of the evolutionary and functional influences on skull development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Beaupré, G. S., Orr, T. E., & Carter, D. R. (1990). An approach for time-dependent bone modelling and remodelling—theoretical development. Journal of Orthopaedic Research, 8, 651–661.

    Article  PubMed  Google Scholar 

  • Biknevicius, A. R., & Van Valkenburgh, B. (1996). Design for killing: Craniodental adaptations of predators. In J. L. Gittleman (Ed.), Carnivore behaviour, ecology, and evolution (Vol. 2, pp. 393–428). New York: Cornell University Press.

    Google Scholar 

  • Bookstein, F. L. (1978). The measurement of biological shape and shape change. Lecture notes in biomathematics. New York: Springer.

    Google Scholar 

  • Bookstein, F. L. (1989). Principal warps: Thin-plate splines and the decomposition of deformations. IEEE transactions in Pattern Analysis and Machine Intelligence, 11, 567–585.

    Article  Google Scholar 

  • Bookstein, F. L. (1991). Morphometric tools for landmark data. Cambridge: Cambridge University Press.

    Google Scholar 

  • Bromage, T. G. (1986). A comparative scanning electron microscope study of facial growth and remodeling in early hominids. Ph.D. thesis, University of Toronto.

  • Burger, E. H., & Klein-Nulend, J. (1999). Mechanotransduction in bone—role of the lacuno-canalicular network. The FASEB Journal, 13, 101–112.

    Google Scholar 

  • Carter, D. R., & Beaupré, G. S. (2001). Skeletal function and form: Mechanobiology of skeletal development, aging, and regeneration. Cambridge: Cambridge University Press.

    Google Scholar 

  • Carter, D. R., Van der Meulen, M. C. H., & Beaupré, G. S. (1996). Skeletal development: Mechanical consequences of growth, aging and disease. In M. R. Feldman & J. Kelsey (Eds.), Osteoporosis (pp. 333–350). San Diego: Academic Press.

    Google Scholar 

  • Caumul, R., & Polly, P. D. (2005). Phylogenetic and environmental components of morphological variation: Skull, mandible, and molar shape in marmots (Marmota, Rodentia). Evolution, 59, 2460–2472.

    PubMed  Google Scholar 

  • Cobb, S. N., & O’Higgins, P. (2007). The ontogeny of sexual dimorphism in the facial skeleton of the African apes. Journal of Human Evolution, 53, 176–190.

    Article  PubMed  Google Scholar 

  • Cowin, S. C. (2001). Bone modeling and remodeling: Theories and computation. In S. C. Cowin (Ed.), Bone mechanics handbook (2nd ed., pp. 1–42). Boca Raton, FL: CRC Press.

    Google Scholar 

  • Currey, J. D. (2002). Bones: structure and mechanics. Princeton: Princeton University Press.

    Google Scholar 

  • Currey, J. D. (2005). Bone architecture and fracture. Current Osteoporosis Reports, 3, 52–56.

    Article  PubMed  Google Scholar 

  • Curtis, N., Jones, M., Evans, S. E., O’Higgins, P., & Fagan, M. J. (2009). Predicting muscle activation patterns from motion and anatomy: Modelling the skull of Sphenodon (Diapsida: rhynchocephalia). Journal of the Royal Society, Interface, 7(42), 153–160.

    Article  PubMed  Google Scholar 

  • Curtis, N., Jones, M. E. H., Lappin, A. K., O’Higgins, P., Evans, S. E., & Fagan, M. J. (2010). Comparison between in vivo and theoretical bite performance: Using multi-body modelling to predict muscle and bite forces in a reptile skull. Journal of Biomechanics, 43, 2804–2809.

    Article  PubMed  CAS  Google Scholar 

  • Curtis, N., Kupczik, K., O’Higgins, P., Moazen, M., & Fagan, M. J. (2008). Predicting skull loading: Applying multibody dynamics analysis to a macaque skull. Anatomical Record, 291, 491–501.

    Article  Google Scholar 

  • Demes, B., & Creel, N. (1988). Bite force, diet and cranial morphology of fossil hominids. Journal of Human Evolution, 17, 657–670.

    Article  Google Scholar 

  • Dryden, I. L., Hirst, J. D., & Melville, J. L. (2007). Statistical analysis of unlabeled point sets: Comparing molecules in chemoinformatics. Biometrics, 63, 237–251.

    Article  PubMed  CAS  Google Scholar 

  • Dryden, I. L., & Mardia, K. V. (1998). Statistical shape analysis. London: Wiley.

    Google Scholar 

  • Dumont, E. R., Grosse, I. R., & Slater, G. J. (2009). Requirements for comparing the performance of finite element models of biological structures. Journal of Theoretical Biology, 256, 96–103.

    Article  PubMed  CAS  Google Scholar 

  • Endo, B. (1966). Experimental studies on the mechanical significance of the form of the human facial skeleton. Journal of the Faculty of Science, University of Tokyo, 8, 1–106.

    Google Scholar 

  • Enlow, D. H. (1968). The human face: An account of the postnatal growth and development of the craniofacial skeleton. New York: Harper and Row.

    Google Scholar 

  • Enlow, D. H. (1975). Handbook of facial growth. Toronto: WB Saunders.

    Google Scholar 

  • Enlow, D. H., & Hans, M. G. (1996). Essentials of facial growth. Philadelphia: WB Sounders.

    Google Scholar 

  • Fagan, M. J. (1992). Finite element analysis: Theory and practice. London: Longman Scientific & Technical.

    Google Scholar 

  • Fitton, L. C., Shi, J., Fagan, M. J., & O’Higgins, P. (in press). Masticatory loadings and cranial deformation in Macaca fascicularis: A finite element analysis sensitivity study. Journal of Anatomy.

  • Fitton, L. C., Shi, J., Liu, J., Fagan, M. J., & O’Higgins, P. (2010). Functional loading, facial remodelling and the formation of the maxillary sinus and maxillary fossa in Macaca fascicularis and Cercocebus torquatus. American Journal of Physical Anthropology, 141(S50), 105.

    Google Scholar 

  • Frost, H. M. (1990). Skeletal structural adaptations to mechanical usage (SATMU): 2. Redefining Wolff’s law: The remodelling problem. Anatomical Record, 226, 414–422.

    Article  PubMed  CAS  Google Scholar 

  • Greaves, W. S. (1983). A functional analysis of carnassial biting. Biological Journal of the Linnean Society, 20, 353–363.

    Article  Google Scholar 

  • Greaves, W. S. (1985). The generalized carnivore jaw. Zoolological Journal of the Linnean Society, 85, 267–274.

    Article  Google Scholar 

  • Greaves, W. S. (1995). Functional predictions from theoretical models of the skull and jaws in reptiles and mammals. In J. Thomason (Ed.), Functional morphology in vertebrate palaeontology (pp. 99–115). Cambridge: Cambridge University Press.

    Google Scholar 

  • Gröning, F. (2009). The mechanical significance of anatomically modern human and Neanderthal mandibular morphology. A study using voxel-based finite element modelling. Ph.D. thesis, University of York.

  • Gröning, F., Fagan, M. J., & O’Higgins, P. (2011). The effects of the periodontal ligament on mandibular stiffness: A study combining finite element analysis and geometric morphometrics. Journal of Biomechanics, 44, 1304–1312.

    Article  PubMed  Google Scholar 

  • Gunz, P., Mitteroecker, P., & Bookstein, F. L. (2005). Semilandmarks in three dimensions. In D. Slice (Ed.), Developments in primatology: Progress and prospects modern morphometrics in physical anthropology. Berlin: Springer.

    Google Scholar 

  • Gunz, P., Mitteroecker, P., Neubauer, S., Weber, G. W., & Bookstein, F. L. (2009). Principles for the virtual reconstruction of hominin crania. Journal of Human Evolution, 57(1), 48–62.

    Article  PubMed  Google Scholar 

  • Gupta, K. K., Knoell, A. C., & Grenoble, D. E. (1973). Mathematical modeling and structural analysis of the mandible. Biomaterials, Medical Devices, and Artificial Organs, 1, 469–479.

    PubMed  CAS  Google Scholar 

  • Hannam, A. G. (2003). Dynamic modeling and jaw biomechanics. Orthodontics and Craniofacial Research, 6(Suppl. 1), 59–65.

    Article  PubMed  Google Scholar 

  • Hannam, A. G., Stavness, I., Lloyd, J. E., & Fels, S. (2008). A dynamic model of jaw and hyoid biomechanics during chewing. Journal of Biomechanics, 41, 1069–1076.

    Article  PubMed  CAS  Google Scholar 

  • Hart, R. T., Hennebel, V. V., Thongpreda, N., Van Buskirk, W., & Anderson, R. C. (1992). Modeling the biomechanics of the mandible: A three-dimensional finite element study. Journal of Biomechanics, 25, 261–286.

    Article  PubMed  CAS  Google Scholar 

  • Herring, S. W. (1980). Functional design of cranial muscles: Comparative and physiological studies in pigs. American Zoologist, 20, 283–293.

    Google Scholar 

  • Herring, S. W. (1993). Formation of the vertebrate face epigenetic and functional influences. Integrative and Comparative Biology, 33, 472–483.

    Article  Google Scholar 

  • Hylander, W. L., Picq, P. G., & Johnson, K. R. (1991). Masticatory-stress hypotheses and the supraorbital region of primates. American Journal of Physical Anthropology, 86, 1–36.

    Article  PubMed  CAS  Google Scholar 

  • Ichim, I., Kieser, J. A., & Swain, M. V. (2007). Functional significance of strain distribution in the human mandible under masticatory load: Numerical predictions. Archives of Oral Biology, 52, 465–473.

    Article  PubMed  CAS  Google Scholar 

  • Janis, C. M. (1995). Correlations between craniodental morphology and feeding behaviour in ungulates: Reciprocal illumination between living and fossil taxa. In J. J. Thomason (Ed.), Functional morphology in vertebrate paleontology (pp. 76–98). Cambridge: Cambridge University Press.

    Google Scholar 

  • Knothe-Tate, M. L., Adamson, J. R., Tami, A. E., & Bauer, T. W. (2004). The osteocyte. The International Journal of Biochemistry & Cell Biology, 36, 1–8.

    Article  CAS  Google Scholar 

  • Koolstra, J. H. (2002). Dynamics of the human masticatory system. Critical Reviews in Oral Biology and Medicine, 13, 368–380.

    Article  Google Scholar 

  • Koolstra, J. H., & van Eijden, T. M. G. J. (1997a). Dynamics of the human masticatory muscles during a jaw open-close movement. Journal of Biomechanics, 30, 883–889.

    Article  PubMed  CAS  Google Scholar 

  • Koolstra, J. H., & van Eijden, T. M. G. J. (1997b). The jaw open-close movements predicted by biomechanical modelling. Journal of Biomechanics, 30, 943–950.

    Article  PubMed  CAS  Google Scholar 

  • Koolstra, J. H., & van Eijden, T. M. G. J. (1999). Three-dimensional dynamical capabilities of the human masticatory muscles. Journal of Biomechanics, 32, 145–152.

    Article  PubMed  CAS  Google Scholar 

  • Koolstra, J. M., & van Eijden, T. M. G. J. (2005). Combined finite-element and rigid-body analysis of human jaw joint dynamics. Journal of Biomechanics, 38, 2431–2439.

    Article  PubMed  CAS  Google Scholar 

  • Korioth, T. W., & Hannam, A. G. (1994). Deformation of the human mandible during simulated tooth clenching. Journal of Dental Research, 73, 56–66.

    Article  PubMed  CAS  Google Scholar 

  • Kupczik, K., Dobson, C. A., Crompton, R. H., Phillips, R., Oxnard, C. E., Fagan, M. J., et al. (2009). Masticatory loading and bone adaptation in the supraorbital torus of developing macaques. American Journal of Physical Anthropology, 139, 193–203.

    Article  PubMed  CAS  Google Scholar 

  • Kupczik, K., Dobson, C. A., Fagan, M. J., Crompton, R. H., Oxnard, C. E., & O’Higgins, P. (2007). Assessing mechanical function of the zygomatic region in macaques: Validation and sensitivity testing of finite element models. Journal of Anatomy, 210, 41–53.

    Article  PubMed  CAS  Google Scholar 

  • Langenbach, G. E. J., & Eijden, T. M. G. J. (2001). Mammalian feeding motor patterns. American Zoologist, 41, 1338–1351.

    Article  Google Scholar 

  • Langenbach, G. E. J., & Hannam, A. G. (1999). The role of passive muscle tensions in a three-dimensional dynamic model of the human jaw. Archives of Oral Biology, 44, 557–573.

    Article  PubMed  CAS  Google Scholar 

  • Langenbach, G. E. J., Zhang, F., Herring, S. W., & Hannam, A. G. (2002). Modelling the masticatory biomechanics of a pig. Journal of Anatomy, 201, 383–393.

    Article  PubMed  CAS  Google Scholar 

  • Langenbach, G. E. J., Zhang, F., Herring, S. W., van Eijden, T. M. G. J., & Hannam, A. G. (2006). Dynamic mechanics in the pig mandibular symphysis. Journal of Anatomy, 209, 69–78.

    Article  PubMed  CAS  Google Scholar 

  • Marcus, L. F., Hingst-Zaher, E., & Zaher, H. (2000). Application of landmark morphometrics to skull representing the orders of living mammals. Hystrix, 11, 27–47.

    Google Scholar 

  • Meloro, C., Raia, P., Piras, P., Barbera, C., & O’Higgins, P. (2008). The shape of the mandibular corpus in large fissiped carnivores: allometry, function and phylogeny. Zoological Journal of the Linnean Society, 154, 832–845.

    Article  Google Scholar 

  • Mitteroecker, P., Gunz, P., Bernhard, M., Schaefer, K., & Bookstein, F. L. (2004). Comparison of cranial ontogenetic trajectories among great apes and humans. Journal of Human Evolution, 46, 679–698.

    Article  PubMed  Google Scholar 

  • Moazen, M., Curtis, N., Evans, S. E., O’Higgins, P., & Fagan, M. J. (2009). Biomechanical assessment of evolutionary changes in the lepidosaurian skull. Proceedings of the National Academy of Sciences USA, 20, 8273–8277.

    Article  Google Scholar 

  • Moazen, M., Curtis, N., Evans, S. E., O’Higgins, P., & Fagan, M. J. (2008a). Rigid-body analysis of a lizard skull: modelling the skull of Uromastyx hardwickii. Journal of Biomechanics, 41, 1274–1280.

    Article  PubMed  CAS  Google Scholar 

  • Moazen, M., Curtis, N., Evans, S. E., O’Higgins, P., & Fagan, M. J. (2008b). Combined finite element and multibody dynamics analysis of biting in a Uromastyx hardwickii lizard skull. Journal of Anatomy, 213, 499–508.

    PubMed  CAS  Google Scholar 

  • Moore, W. J. (1967). Muscular function and skull growth in the laboratory rat (Rattus norvegicus). Journal of Zoology (London), 152, 287–296.

    Article  Google Scholar 

  • Moss, M. L. (1964). Vertical growth of the human face. American Journal of Orthodontics, 50, 359–376.

    Article  Google Scholar 

  • Moss, M. L., & Salentijn, L. (1969a). The primary role of functional matrices in facial growth. American Journal of Orthodontics, 55, 566–577.

    Article  PubMed  CAS  Google Scholar 

  • Moss, M. L., & Salentijn, L. (1969b). The capsular matrix. American Journal of Orthodontics, 56, 474–490.

    Article  PubMed  CAS  Google Scholar 

  • O’Higgins, P., Bastir, M., & Kupczik, K. (2006). Shaping the human face. In T. G. Bromage, A. Vidal, E. Aguirre, & A. Perez-Ochoa (Eds.), Integrative approaches to human health and evolution. Amsterdam: Elsevier.

    Google Scholar 

  • O’Higgins, P., Cobb, S. N., Fitton, L., Gröning, F., Phillips, R., & Fagan, M. J. (2009). Facial mechanics in early hominins: A study combining geometric morphometrics and finite elements analysis. American Journal of Physical Anthropology, 138(48), 201–202.

    Google Scholar 

  • O’Higgins, P., Cobb, S. N., Fitton, L. C., Gröning, F., Phillips, R., Liu, J., et al. (2011). Combining geometric morphometrics and functional simulation: An emerging toolkit for virtual functional analyses. Journal of Anatomy, 218, 3–15.

    Article  PubMed  Google Scholar 

  • Oxnard, C. E. (1993). Bone and bones, architecture and stress, fossils and osteoporosis. Journal of Biomechanics, 26(suppl. 1), 63–79.

    Article  PubMed  Google Scholar 

  • Oxnard, C. E., & O’Higgins, P. (2009). Biology clearly needs morphometrics. does morphometrics need biology? Biological Theory, 4(1), 1–14.

    Article  Google Scholar 

  • Pierce, S. E., Angielczyk, K. D., & Rayfield, E. J. (2008). Patterns of morphospace occupation and mechanical performance in extant crocodilian skulls: A combined geometric morphometric and finite element modeling approach. Journal of Morphology, 269, 840–865.

    Article  PubMed  Google Scholar 

  • Preuschoft, H., Witte, H., & Witzel, U. (2002). Pneumatized spaces, sinuses and spongy bones in the skulls of primates. Anthropologischer Anzeiger, 69, 67–79.

    Google Scholar 

  • Prossinger, H., Seidler, H., Wicke, L., Weaver, D., Recheis, W., Stringer, C., et al. (2003). Electronic removal of encrustations inside the Steinheim cranium reveals paranasal sinus features and deformations, and provides a revised endocranial volume estimate. Anatomical Record, 273B, 132–142.

    Article  Google Scholar 

  • Radinsky, L. B. (1981a). Evolution of skull shape in carnivores, 1: Representative modern carnivores. Biological Journal of the Linnean Society, 15, 369–388.

    Article  Google Scholar 

  • Radinsky, L. B. (1981b). Evolution of skull shape in carnivores, 2: Additional modern carnivores. Biological Journal of the Linnean Society, 16, 337–355.

    Article  Google Scholar 

  • Radinsky, L. B. (1982). Evolution of skull shape in carnivores 3. The origin and early radiation of modern carnivores families. Paleobiology, 8, 177–195.

    Google Scholar 

  • Radinsky, L. B. (1985). Approaches in evolutionary morphology: A search for patterns. Annual Reviews of Ecology and Systematics, 16, 1–14.

    Article  Google Scholar 

  • Rae, T. C., & Koppe, T. (2004). Holes in the head: Evolutionary interpretations of the paranasal sinuses in cattarhines. Evolutionary Anthropology, 13, 211–223.

    Article  Google Scholar 

  • Raia, P., Carotenuto, F., Meloro, C., Piras, P., & Pushkina, D. (2010). The shape of contention: Adaptation, history and contingency in the ungulate mandibles. Evolution, 64, 1489–1503.

    PubMed  Google Scholar 

  • Rayfield, E. J. (2005). Using finite-element analysis to investigate suture morphology: A case study using large carnivorous dinosaurs. The Anatomical Record Part A, 283, 349–365.

    Article  Google Scholar 

  • Rohlf, F. J. (2000). On the use of shape spaces to compare morphometric methods. Hystrix, 11, 8–24.

    Google Scholar 

  • Ross, C. F., & Laitman, J. T. (2005). Special issue: Finite element analysis in vertebrate biomechanics. Anatomical Record, 283A(2), 251–413.

    Article  Google Scholar 

  • Ross, C. F., & Metzger, K. A. (2004). Bone strain gradients and optimization in vertebrate skulls. Annals of Anatomy, 186, 387–396.

    Article  PubMed  Google Scholar 

  • Ross, C. F., Patel, B. A., Slice, D. E., Strait, D. S., Dechow, P. C., Richmond, B. G., et al. (2005). Modeling masticatory muscle force in finite element analysis: Sensitivity analysis using principal coordinates analysis. Anatomical Record, 283A, 288–299.

    Article  Google Scholar 

  • Schumacher, G. H. (1961). Funktionelle Morphologie der Kaumuskulatur. Jena: G. Fischer.

    Google Scholar 

  • Scott, J. H. (1953). The cartilage of the nasal septum. British Dental Journal, 95, 37–43.

    Google Scholar 

  • Scott, J. H. (1956). Growth at facial sutures. American Journal of Orthodontics, 42, 381–387.

    Article  Google Scholar 

  • Sellers, W. I., & Crompton, R. H. (2004). Using sensitivity analysis to validate the predictions of a biomechanical model of bite forces. Annals of Anatomy, 186, 89–95.

    Article  PubMed  Google Scholar 

  • Shea, B. T. (1982). Growth and size allometry in the African Pongidae: Cranial and postcranial analyses. Ph.D. dissertation, Duke University.

  • Shi, J. F., Curtis, N., Fitton, L., O’Higgins, P., & Fagan, M. J. (2009).The effect of variations in muscle positions in a complex biomechanical model of a macaque skull. American Journal of Physical Anthropology, 138, S48, 238.

    Google Scholar 

  • Sigal, I. A., Hardisty, M., & Whyne, C. (2008). Mesh-morphing algorithms for specimen-specific finite element modeling. Journal of Biomechanics, 41, 1381–1389.

    Article  PubMed  Google Scholar 

  • Sigal, I. A., Yang, H., Roberts, M. D., & Downs, J. C. (2010). Morphing methods to parameterize specimen-specific finite element model geometries. Journal of Biomechanics, 43, 254–262.

    Article  PubMed  Google Scholar 

  • Slice, D. E. (Ed.). (2005). Modern morphometrics in physical anthropology. New York: Kluwer.

    Google Scholar 

  • Slice, D. E. (2007). Geometric morphometrics. Annual Review of Anthropology, 36, 261–281.

    Article  Google Scholar 

  • Spencer, M. A. (1998). Force production in the primate masticatory system: Electromyographic tests of biomechanical hypotheses. Journal of Human Evolution, 34, 25–54.

    Article  PubMed  CAS  Google Scholar 

  • Stayton, C. T. (2009). Application of thin-plate spline transformations to finite element models, or, how to turn a bog turtle into a spotted turtle to analyze both. Evolution, 63(5), 1348–1355.

    Article  PubMed  Google Scholar 

  • Strait, D. S., Richmond, B. G., Spencer, M. A., Ross, C. F., Dechow, P. C., & Wood, B. A. (2007). Masticatory biomechanics and its relevance to early hominid phylogeny: An examination of palatal thickness using finite-element analysis. Journal of Human Evolution, 52, 585–599.

    Article  PubMed  Google Scholar 

  • Strait, D. S., Weber, G. W., Neubauer, S., Chalk, J., Richmond, B. G., Lucas, P. W., et al. (2009). The feeding biomechanics and dietary ecology of Australopithecus africanus. Proceedings of the National Academy of Sciences USA, 106, 2124–2129.

    Article  CAS  Google Scholar 

  • Takada, K., Yashiro, K., Sorihashi, Y., Morimoto, T., & Sakuda, M. (1996). Tongue, jaw, and lip muscle activity and jaw movement during experimental chewing efforts in man. Journal of Dental Research, 75, 1598–1606.

    Article  PubMed  CAS  Google Scholar 

  • Thilander, B. (1995). Basic mechanisms in craniofacial growth. Acta Odontologica Scandinavica, 53, 144–151.

    Article  PubMed  CAS  Google Scholar 

  • Turner, C., Forwood, M., & Otter, M. (1994). Mechanotransduction in bone: do bone cells act as sensors of fluid flow? The FASEB Journal, 8, 875–878.

    CAS  Google Scholar 

  • Blanksma, S. N. G., & van Eijden, T. M. (1995). Electromyographic heterogeneity in the human temporalis and masseter muscles during static biting, open/close excursions, and chewing. Journal of Dental Research, 74, 1318–1327.

    Article  PubMed  CAS  Google Scholar 

  • van Spronsen, P. H., Weijs, W. A., Valk, J., Prahl-Andersen, B., & van Ginkel, F. C. (1989). Comparison of jaw-muscle bite-force cross-sections obtained by means of magnetic resonance imaging and high-resolution CT scanning. Journal of Dental Research, 68, 1765–1770.

    Article  PubMed  Google Scholar 

  • Vollmer, D., Meyer, U., Joos, U., Vegh, A., & Piffko, J. (2000). Experimental and finite element study of a human mandible. Journal of Cranio-Maxillofacial Surgery, 28, 91–96.

    Article  PubMed  CAS  Google Scholar 

  • Wealthall, R. J. (2002). Surface remodelling of the facial skeleton in Juvenile Macaca mulatta: Implications for sexual dimorphism. Folia Primatologica, 73, 49–53.

    Article  Google Scholar 

  • Weijs, W. A. (1994). Evolutionary approach of masticatory motor patterns in mammals. Advances in Comparative Environmental Physiology, 18, 281–320.

    Article  Google Scholar 

  • Weijs, W. A., & Hillen, B. (1985). Physiological cross-section of the human jaw muscles. Acta Anatomica, 121, 31–35.

    Article  PubMed  CAS  Google Scholar 

  • Witzel, U., & Preuschoft, H. (2005). Finite-element model construction for the virtual synthesis of the skulls in Vertebrates: case study of Diplodocus. Anatomical Record, 283A, 391–401.

    Article  Google Scholar 

  • Wroe, S., McHenry, C., & Thomason, J. (2005). Bite club: Comparative bite force in big biting mammals and the prediction of predatory behaviour in fossil taxa. Proceedings of the Royal Society B, 272, 619–625.

    Article  PubMed  Google Scholar 

  • Wroe, S., & Milne, N. (2007). Convergence and remarkably consistent constraint in the evolution of carnivore skull shape. Evolution, 61, 1251–1260.

    Article  PubMed  Google Scholar 

  • Wroe, S., Moreno, K., Clausen, P., McHenry, C., & Curnoe, D. (2007). High-resolution three-dimensional computer simulation of hominid cranial mechanics. Anatomical Record, 290, 1248–1255.

    Article  Google Scholar 

  • Zelditch, M. L., Swiderski, D. L., Sheets, H. D., & Fink, W. L. (2004). Geometric morphometrics for biologists: a primer. San Diego, CA: Elsevier Academic Press.

    Google Scholar 

Download references

Acknowledgments

Since submission of this manuscript Professor Roger Phillips has passed away. We would like to express our deep sense of loss and our wholehearted appreciation of a valued colleague and friend. His contributions to software development made this paper possible and have opened up novel and engaging avenues of research for us all. We are grateful to Philipp Gunz and Philipp Mitteroecker for inviting Paul O’Higgins to take part in the 21st Altenberg Workshop in Theoretical Biology ‘The role of development in human evolution’. This paper is based on the presentation given at that symposium. The Konrad Lorenz Institute management and staff were most generous and attentive in supporting a lively and exciting symposium. We are grateful to colleagues who, through discussion and critique, have contributed to the development of the methods and ideas we present; R McNeill Alexander, Fred Bookstein, John Currey, Neil Curtis, Kornelius Kupczik, Carlo Meloro, Charles Oxnard, Lee Page, Callum Ross, Dennis Slice, David Strait, Jack Wharton and Ulrich Witzel. The work was supported by research grants from The Leverhulme Trust (F/00224), BBSRC (BB/E013805; BB/E009204), and by the Marie Curie Initiatives EVAN (MRTN CT-2005-019564) and PALAEO (MEST-CT-2005-020601).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul O’Higgins.

Rights and permissions

Reprints and permissions

About this article

Cite this article

O’Higgins, P., Fitton, L.C., Phillips, R. et al. Virtual Functional Morphology: Novel Approaches to the Study of Craniofacial Form and Function. Evol Biol 39, 521–535 (2012). https://doi.org/10.1007/s11692-012-9173-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11692-012-9173-8

Keywords

Navigation