Skip to main content

Advertisement

Log in

Context-Dependent Evolutionary Models for Non-Coding Sequences: An Overview of Several Decades of Research and an Analysis of Laurasiatheria and Primate Evolution

  • Synthesis Paper
  • Published:
Evolutionary Biology Aims and scope Submit manuscript

Abstract

The past decade has seen a growing interest in evolutionary models that relax the assumption of site-independent evolution for non-coding sequences. While phylogenetic inference using such so-called context-dependent models is currently computationally prohibitive, these models have been shown to yield significant increases in model fit compared to site-independent evolutionary models, which remain the most widely used evolutionary models to study substitution patterns and perform phylogenetic inference. Context-dependent models have been shown to be suited to study the spontaneous deamination of cytosine in mammalian sequences. In this paper, I discuss various approaches presented in recent years to model context-dependent evolution. I start with discussing the empirical research and results that have led to the development of these models. To accurately estimate the context-dependent substitution patterns that arise from these models, accurate sampling of substitution histories under such models is required. Further, appropriate model selection techniques to assess model performance has become more important than ever, given the drastic increase in parameters of context-dependent models and the tendency of older model selection techniques to prefer parameter-rich models. I also present new results on two mammalian datasets (Primate and Laurasiatheria data) to shed a light on so-called lineage-dependent context-dependent evolution. I conclude this paper with a discussion on current challenges in the development of context-dependent modeling approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Akaike, H. (1974). New look at statistical-model identification. IEEE Transactions on Automatic Control, 19(6), 716–723.

    Google Scholar 

  • Arndt, P. F., Burge, C. B., & Hwa, T. (2003). DNA sequence evolution with neighbor-dependent mutation. Journal of Computational Biology, 10(3–4), 313–322.

    PubMed  CAS  Google Scholar 

  • Arndt, P. F., & Hwa, T. (2005). Identification and measurement of neighbor-dependent nucleotide substitution processes. Bioinformatics, 21(10), 2322–2328.

    PubMed  CAS  Google Scholar 

  • Baele, G., Van de Peer, Y., & Vansteelandt, S. (2008). A model-based approach to study nearest-neighbor influences reveals complex substitution patterns in non-coding sequences. Systematic Biology, 57(5), 675–692.

    PubMed  CAS  Google Scholar 

  • Baele, G., Van de Peer, Y., & Vansteelandt, S. (2009). Efficient context-dependent model building based on clustering posterior distributions for non-coding sequences. BMC Evolutionary Biology, 9, 87.

    PubMed  Google Scholar 

  • Baele, G., Van de Peer, Y., & Vansteelandt, S. (2010a). Modelling the ancestral sequence distribution and model frequencies in context-dependent models for primate non-coding sequences. BMC Evolutionary Biology, 10, 244.

    PubMed  Google Scholar 

  • Baele, G., Van de Peer, Y., & Vansteelandt, S. (2010b). Using non-reversible context-dependent evolutionary models to study substitution patterns in primate non-coding sequences. Journal of Molecular Evolution, 71(1), 34–50.

    PubMed  CAS  Google Scholar 

  • Baldauf, S. L. (2003). Phylogeny for the faint of heart: A tutorial. Trends in Genetics, 19(6), 345–351.

    PubMed  CAS  Google Scholar 

  • Berard, J., Gouere, J. B., & Piau, D. (2008). Solvable models of neighbor-dependent substitution processes. Mathematical Biosciences, 211(1), 56–88.

    PubMed  CAS  Google Scholar 

  • Bernardo, J. M., & Smith, A. F. M. (1994). Bayesian theory. New York: Wiley.

    Google Scholar 

  • Bird, A. P. (1980). DNA methylation and the frequency of CpG in animal DNA. Nucleic Acids Research, 8(7), 1499–1504.

    PubMed  CAS  Google Scholar 

  • Blaisdell, B. E. (1985). A method of estimating from two aligned present-day DNA sequences their ancestral composition and subsequent rates of substitution, possibly different in the two lineages, corrected for multiple and parallel substitutions at the same site. Journal of Molecular Evolution, 22(1), 69–81.

    PubMed  CAS  Google Scholar 

  • Blake, R. D., Hess, S. T., & Nicholson-Tuell, J. (1992). The influence of nearest neighbors on the rate and pattern of spontaneous point mutations. Journal of Molecular Evolution, 34(3), 189–200.

    PubMed  CAS  Google Scholar 

  • Bollback, J. P. (2002). Bayesian model adequacy and choice in phylogenetics. Molecular Biology and Evolution, 19(7), 1171–1180.

    PubMed  CAS  Google Scholar 

  • Bulmer, M. (1986). Neighboring base effects on substitution rates in pseudogenes. Molecular Biology and Evolution, 3(4), 322–329.

    PubMed  CAS  Google Scholar 

  • Christensen, O. F., Hobolth, A., & Jensen, J. L. (2005). Pseudo-likelihood analysis of codon substitution models with neighbor-dependent rates. Journal of Computational Biology, 12(9), 1166–1182.

    PubMed  CAS  Google Scholar 

  • de Koning, A. P., Gu, W., & Pollock, D. D. (2010). Rapid likelihood analysis on large phylogenies using partial sampling of substitution histories. Molecular Biology and Evolution, 27(2), 249–265.

    PubMed  Google Scholar 

  • Deforche, K., Camacho, R., Laethem, K. V., Shapiro, B., Moreau, Y., Rambaut, A., et al. (2007). Estimating the relative contribution of dNTP pool imbalance and APOBEC3G/3F editing to HIV evolution in vivo. Journal of Computational Biology, 14(8), 1105–1114.

    PubMed  CAS  Google Scholar 

  • Duncan, B. K., & Miller, J. H. (1980). Mutagenic deamination of cytosine residues in DNA. Nature, 287(5782), 560–561.

    PubMed  CAS  Google Scholar 

  • Duret, L., & Galtier, N. (2000). The covariation between TpA deficiency, CpG deficiency, and G+C content of human isochores is due to a mathematical artifact. Molecular Biology and Evolution, 17(11), 1620–1625.

    PubMed  CAS  Google Scholar 

  • Erickson, J. W., & Altman, G. (1979). A search for patterns in the nucleotide sequence of the MS2 genome. Journal of Mathematical Biology, 7, 219–230.

    Google Scholar 

  • Fan, Y., Wu, R., Chen, M. H., Kuo, L., & Lewis, P. O. (2011). Choosing among partition models in Bayesian phylogenetics. Molecular Biology and Evolution, 28(1), 523–532.

    PubMed  CAS  Google Scholar 

  • Felsenstein, J. (1981). Evolutionary trees from DNA sequences: a maximum likelihood approach. Journal of Molecular Evolution, 17(6), 368–376.

    PubMed  CAS  Google Scholar 

  • Felsenstein, J. (1995). PHYLIP (Phylogenetic inference package) ver. 3.57.

  • Felsenstein, J. (2004). Inferring phylogenies. Sunderland, Mass: Sinauer Associates.

  • Felsenstein, J., & Churchill, G. A. (1996). A hidden Markov model approach to variation among sites in rate of evolution. Molecular Biology and Evolution, 13(1), 93–104.

    PubMed  CAS  Google Scholar 

  • Friel, N., & Petitt, A. N. (2008). Marginal likelihood estimation via power posteriors. Journal of the Royal Statistical Society: Series B, 70, 589–607.

    Google Scholar 

  • Fryxell, K. J., & Moon, W. J. (2005). CpG mutation rates in the human genome are highly dependent on local GC content. Molecular Biology and Evolution, 22(3), 650–658.

    PubMed  CAS  Google Scholar 

  • Fryxell, K. J., & Zuckerkandl, E. (2000). Cytosine deamination plays a primary role in the evolution of mammalian isochores. Molecular Biology and Evolution, 17(9), 1371–1383.

    PubMed  CAS  Google Scholar 

  • Gascuel, O., Steel, M. A. (2007). Reconstructing evolution: New mathematical and computational advances (Vol. xxix). Oxford; New York: Oxford University Press.

  • Gaut, B. S., & Lewis, P. O. (1995). Success of maximum likelihood phylogeny inference in the four-taxon case. Molecular Biology and Evolution, 12(1), 152–162.

    PubMed  CAS  Google Scholar 

  • Gelfand, A. E., & Meng, X.-L. (1996). Model checking and model improvement (pp. 189–198). Chapman and Hall: New York.

    Google Scholar 

  • Gelman, A., & Meng, X.-L. (1998). Simulating normalizing constants: From importance sampling to bridge sampling to path sampling. Statistical Science, 13, 163–185.

    Google Scholar 

  • Geyer, C. J. (1992). Practical Markov chain Monte Carlo. Statistical Science, 7(4), 473–483.

    Google Scholar 

  • Gojobori, T., Ishii, K., & Nei, M. (1982). Estimation of average number of nucleotide substitutions when the rate of substitution varies with nucleotide. Journal of Molecular Evolution, 18(6), 414–423.

    PubMed  CAS  Google Scholar 

  • Goldman, N., & Whelan, S. (2002). A novel use of equilibrium frequencies in models of sequence evolution. Molecular Biology and Evolution, 19, 1821–1831.

    PubMed  CAS  Google Scholar 

  • Green, P. J. (1995). Reversible jump Markov chain Monte Carlo computation and Bayesian model determination. Biometrika, 82, 711–732.

    Google Scholar 

  • Green, P., Ewing, B., Miller, W., Thomas, P. J., & Green, E. D. (2003). Transcription-associated mutational asymmetry in mammalian evolution. Nature Genetics, 33(4), 514–517.

    PubMed  CAS  Google Scholar 

  • Hasegawa, M., Kishino, H., & Yano, T. (1985). Dating of the human-ape splitting by a molecular clock of mitochondrial DNA. Journal of Molecular Evolution, 22(2), 160–174.

    PubMed  CAS  Google Scholar 

  • Hernandez, R. D., Williamson, S. H., & Bustamante, C. D. (2007). Context dependence, ancestral misidentification, and spurious signatures of natural selection. Molecular Biology and Evolution, 24(8), 1792–1800.

    PubMed  CAS  Google Scholar 

  • Hess, S. T., Blake, J. D., & Blake, R. D. (1994). Wide variations in neighbor-dependent substitution rates. Journal of Molecular Biology, 236(4), 1022–1033.

    PubMed  CAS  Google Scholar 

  • Hobolth, A. (2008). A Markov chain Monte Carlo expectation maximization algorithm for statistical analysis of DNA sequence evolution with neighbour-dependent substitution rates. Journal of Computer and Graphical Statistics, 17, 138–164.

    Google Scholar 

  • Huelsenbeck, J. P., Ronquist, F., Nielsen, R., & Bollback, J. P. (2001). Bayesian inference of phylogeny and its impact on evolutionary biology. Science, 294(5550), 2310–2314.

    PubMed  CAS  Google Scholar 

  • Hwang, D. G., & Green, P. (2004). Bayesian Markov chain Monte Carlo sequence analysis reveals varying neutral substitution patterns in mammalian evolution. Proceedings of National Academic Science USA, 101(39), 13994–14001.

    CAS  Google Scholar 

  • Jeffreys, H. (1935). Some tests of significance treated by theory of probability. Proceedings of the Cambridge Philosophical Society, 31, 203–222.

    Google Scholar 

  • Jensen, J. L., & Pedersen, A.-M. K. (2000). Probabilistic models of DNA sequence evolution with context dependent rates of substitution. Advances in Applied Probability, 32, 499–517.

    Google Scholar 

  • Jojic, V., Jojic, N., Meek, C., Geiger, D., Siepel, A., Haussler, D., et al. (2004). Efficient approximations for learning phylogenetic HMM models from data. Bioinformatics, 20(Suppl 1), i161–i168.

    PubMed  CAS  Google Scholar 

  • Jukes, T. H., & Cantor, C. R. (Eds.). (1969). Evolution of protein molecules (pp. 21–123). Academic Press: New York.

    Google Scholar 

  • Kass, R. E., & Raftery, A. E. (1995). Bayes factors. Journal of American Statistical Association, 90, 773–795.

    Google Scholar 

  • Kimura, M. (1980). A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. Journal of Molecular Evolution, 16(2), 111–120.

    PubMed  CAS  Google Scholar 

  • Lartillot, N., & Philippe, H. (2006). Computing Bayes factors using thermodynamic integration. Systematic Biology, 55(2), 195–207.

    PubMed  Google Scholar 

  • Lepage, T., Bryant, D., Philippe, H., & Lartillot, N. (2007). A general comparison of relaxed molecular clock models. Molecular Biology and Evolution, 24(12), 2669–2680.

    PubMed  CAS  Google Scholar 

  • Lio, P., & Goldman, N. (1998). Models of molecular evolution and phylogeny. Genome Research, 8(12), 1233–1244.

    PubMed  CAS  Google Scholar 

  • Lunter, G., & Hein, J. (2004). A nucleotide substitution model with nearest-neighbour interactions. Bioinformatics, 20(Suppl 1), i216–i223.

    PubMed  CAS  Google Scholar 

  • Margulies, E. H., Chen, C. W., & Green, E. D. (2006). Differences between pair-wise and multi-sequence alignment methods affect vertebrate genome comparisons. Trends in Genetics, 22(4), 187–193.

    PubMed  CAS  Google Scholar 

  • Mendelman, L. V., Boosalis, M. S., Petruska, J., & Goodman, M. F. (1989). Nearest neighbor influences on DNA polymerase insertion fidelity. Journal of Biological Chemistry, 264(24), 14415–14423.

    PubMed  CAS  Google Scholar 

  • Mighell, A. J., Smith, N. R., Robinson, P. A., & Markham, A. F. (2000). Vertebrate pseudogenes. FEBS Letter, 468(2–3), 109–114.

    CAS  Google Scholar 

  • Minin, V., Abdo, Z., Joyce, P., & Sullivan, J. (2003). Performance-based selection of likelihood models for phylogeny estimation. Systematic Biology, 52(5), 674–683.

    PubMed  Google Scholar 

  • Miyamoto, M. M., Slightom, J. L., & Goodman, M. (1987). Phylogenetic relations of humans and African apes from DNA sequences in the psi eta-globin region. Science, 238(4825), 369–373.

    PubMed  CAS  Google Scholar 

  • Moreira, D., & Philippe, H. (2000). Molecular phylogeny: Pitfalls and progress. International Microbiology, 3(1), 9–16.

    PubMed  CAS  Google Scholar 

  • Morton, B. R. (1995). Neighboring base composition and transversion/transition bias in a comparison of rice and maize chloroplast noncoding regions. Proceedings of National Academic Science USA, 92(21), 9717–9721.

    CAS  Google Scholar 

  • Morton, B. R. (2003). The role of context-dependent mutations in generating compositional and codon usage bias in grass chloroplast DNA. Journal of Molecular Evolution, 56(5), 616–629.

    PubMed  CAS  Google Scholar 

  • Morton, B. R., Bi, I. V., McMullen, M. D., & Gaut, B. S. (2006). Variation in mutation dynamics across the maize genome as a function of regional and flanking base composition. Genetics, 172(1), 569–577.

    PubMed  CAS  Google Scholar 

  • Morton, B. R., & Clegg, M. T. (1995). Neighboring base composition is strongly correlated with base substitution bias in a region of the chloroplast genome. Journal of Molecular Evolution, 41(5), 597–603.

    PubMed  CAS  Google Scholar 

  • Morton, B. R., Oberholzer, V. M., & Clegg, M. T. (1997). The influence of specific neighboring bases on substitution bias in noncoding regions of the plant chloroplast genome. Journal of Molecular Evolution, 45(3), 227–231.

    PubMed  CAS  Google Scholar 

  • Neal, R. M. (2000). Markov chain sampling methods for Dirichlet process mixture models. Journal of Computer Graphical Statistics, 9, 249–265.

    Google Scholar 

  • Nevarez, P. A., DeBoever, C. M., Freeland, B. J., Quitt, M. A., & Bush, E. C. (2010). Context dependent substitution biases vary within the human genome. BMC Bioinformatics, 11, 462.

    PubMed  Google Scholar 

  • Newton, M. A., & Raftery, A. E. (1994). Approximating Bayesian inference with the weigthed likelihood bootstrap. Journal of the Royal Statistical Society: Series B, 56, 3–48.

    Google Scholar 

  • Nielsen, R. (2002). Mapping mutations on phylogenies. Systematic Biology, 51(5), 729–739.

    PubMed  Google Scholar 

  • Nylander, J. A., Ronquist, F., Huelsenbeck, J. P., & Nieves-Aldrey, J. L. (2004). Bayesian phylogenetic analysis of combined data. Systematic Biology, 53(1), 47–67.

    PubMed  Google Scholar 

  • Ogata, Y. (1989). A Monte Carlo method for high dimensional integration. Numerical Mathematics, 55, 137–157.

    Google Scholar 

  • Parisi, G., & Echave, J. (2001). Structural constraints and emergence of sequence patterns in protein evolution. Molecular Biology and Evolution, 18(5), 750–756.

    PubMed  CAS  Google Scholar 

  • Posada, D. (2003). In A. M. Vandamme & M. Salemi (Eds.), The phylogenetic handbook (pp. 256–282). Cambridge University Press.

  • Posada, D., & Buckley, T. R. (2004). Model selection and model averaging in phylogenetics: Advantages of akaike information criterion and bayesian approaches over likelihood ratio tests. Systematic Biology, 53(5), 793–808.

    PubMed  Google Scholar 

  • Posada, D., & Crandall, K. A. (1998). MODELTEST: Testing the model of DNA substitution. Bioinformatics, 14(9), 817–818.

    PubMed  CAS  Google Scholar 

  • Prasad, A. B., Allard, M. W., & Green, E. D. (2008). Confirming the phylogeny of mammals by use of large comparative sequence data sets. Molecular Biology and Evolution, 25(9), 1795–1808.

    PubMed  CAS  Google Scholar 

  • Raftery, A. E., & Lewis, S. M. (1992). [Practical Markov chain Monte Carlo]: Comment: One long run with diagnostics: Implementation strategies for Markov chain Monte Carlo. Statistical Science, 7, 493–497.

    Google Scholar 

  • Ramsahoye, B. H., Biniszkiewicz, D., Lyko, F., Clark, V., Bird, A. P., & Jaenisch, R. (2000). Non-CpG methylation is prevalent in embryonic stem cells and may be mediated by DNA methyltransferase 3a. Proceedings of National Academic Science USA, 97(10), 5237–5242.

    CAS  Google Scholar 

  • Rannala, B., & Yang, Z. (1996). Probability distribution of molecular evolutionary trees: A new method of phylogenetic inference. Journal of Molecular Evolution, 43(3), 304–311.

    PubMed  CAS  Google Scholar 

  • Robinson, D. M., Jones, D. T., Kishino, H., Goldman, N., & Thorne, J. L. (2003). Protein evolution with dependence among codons due to tertiary structure. Molecular Biology and Evolution, 20(10), 1692–1704.

    PubMed  CAS  Google Scholar 

  • Rodrigue, N., Lartillot, N., Bryant, D., & Philippe, H. (2005). Site interdependence attributed to tertiary structure in amino acid sequence evolution. Gene, 347(2), 207–217.

    PubMed  CAS  Google Scholar 

  • Rodrigue, N., Philippe, H., & Lartillot, N. (2006). Assessing site-interdependent phylogenetic models of sequence evolution. Molecular Biology and Evolution, 23(9), 1762–1775.

    PubMed  CAS  Google Scholar 

  • Rubin, D. B. (1984). Bayesianly justifiable and relevant frequency calculations for the applied statistician. Annals of Statistics, 12, 1151–1172.

    Google Scholar 

  • Sanderson, M. J., & Kim, J. (2000). Parametric phylogenetics? Systematic Biology, 49(4), 817–829.

    PubMed  CAS  Google Scholar 

  • Schadt, E. E., Sinsheimer, J. S., & Lange, K. (1998). Computational advances in maximum likelihood methods for molecular phylogeny. Genome Research, 8(3), 222–233.

    PubMed  CAS  Google Scholar 

  • Schafer, J. L. (1997). Analysis of incomplete multivariate data. London: Chapman & Hall/CRC.

    Google Scholar 

  • Schoniger, M., & von Haeseler, A. (1994). A stochastic model for the evolution of autocorrelated DNA sequences. Molecular Phylogenetics and Evolution, 3(3), 240–247.

    PubMed  CAS  Google Scholar 

  • Schwarz, G. (1978). Estimating the dimension of a model. Annals of Statistics, 6, 461–466.

    Google Scholar 

  • Siepel, A., & Haussler, D. (2004a). Combining phylogenetic and hidden Markov models in biosequence analysis. Journal of Computational Biology, 11, 413–428.

    PubMed  CAS  Google Scholar 

  • Siepel, A., & Haussler, D. (2004b). Phylogenetic estimation of context-dependent substitution rates by maximum likelihood. Molecular Biology and Evolution, 21(3), 468–488.

    PubMed  CAS  Google Scholar 

  • Steel, M. A. (2005). Should phylogenetic models be trying to ‘fit an elephant’? Trends in Genetics, 21, 307–309.

    PubMed  CAS  Google Scholar 

  • Suchard, M. A., Kitchen, C. M., Sinsheimer, J. S., & Weiss, R. E. (2003). Hierarchical phylogenetic models for analyzing multipartite sequence data. Systematic Biology, 52(5), 649–664.

    PubMed  Google Scholar 

  • Suchard, M. A., Weiss, R. E., & Sinsheimer, J. S. (2001). Bayesian selection of continuous-time Markov chain evolutionary models. Molecular Biology and Evolution, 18(6), 1001–1013.

    PubMed  CAS  Google Scholar 

  • Sullivan, J., & Joyce, P. (2005). Model selection in phylogenetics. Annual Review of Ecology, Evolution, and Systematics, 36, 445–466.

    Google Scholar 

  • Sullivan, J., & Swofford, D. L. (2001). Should we use model-based methods for phylogenetic inference when we know that assumptions about among-site rate variation and nucleotide substitution pattern are violated? Systematic Biology, 50(5), 723–729.

    PubMed  CAS  Google Scholar 

  • Tajima, F., & Nei, M. (1984). Estimation of evolutionary distance between nucleotide sequences. Molecular Biology and Evolution, 1(3), 269–285.

    PubMed  CAS  Google Scholar 

  • Takahata, N., & Kimura, M. (1981). A model of evolutionary base substitutions and its application with special reference to rapid change of pseudogenes. Genetics, 98(3), 641–657.

    PubMed  CAS  Google Scholar 

  • Tamura, K., & Nei, M. (1993). Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Molecular Biology and Evolution, 10(3), 512–526.

    PubMed  CAS  Google Scholar 

  • Tavaré, S. (1986). Some probabilistic and statistical problems in the analysis of DNA sequences. In R. M. Miura (Ed.), American Mathematical Society: Lectures on mathematics in the life sciences (Vol. 17, pp. 57–86). Providence, RI: American Mathematical Society.

  • Thompson, M. B. (2010). A comparison of methods for computing autocorrelation time. University of Toronto. Report nr 1007.

  • Xie, W., Lewis, P. O., Fan, Y., Kuo, L., & Chen, M. H. (2011). Improving marginal likelihood estimation for Bayesian phylogenetic model selection. Systematic Biology, 60(2), 150–160.

    PubMed  Google Scholar 

  • Yang, Z. (1994). Estimating the pattern of nucleotide substitution. Journal of Molecular Evolution, 39(1), 105–111.

    PubMed  Google Scholar 

  • Yang, Z. (1995). A space-time process model for the evolution of DNA sequences. Genetics, 139(2), 993–1005.

    PubMed  CAS  Google Scholar 

  • Yang, Z. (1996). Among-site rate variation and its impact on phylogenetic analyses. Trends in Ecology & Evolution, 11(9), 367–372.

    CAS  Google Scholar 

  • Yang, Y. W., Chen, Y., & Li, W. H. (2002). The influence of adjacent nucleotides on the pattern of nucleotide substitution in mitochondrial introns of angiosperms. Journal of Molecular Evolution, 55(1), 111–115.

    PubMed  CAS  Google Scholar 

  • Yang, Z., & Rannala, B. (1997). Bayesian phylogenetic inference using DNA sequences: A Markov Chain Monte Carlo Method. Molecular Biology and Evolution, 14(7), 717–724.

    PubMed  CAS  Google Scholar 

  • Yang, Z., & Roberts, D. (1995). On the use of nucleic acid sequences to infer early branchings in the tree of life. Molecular Biology and Evolution, 12, 451–458.

    PubMed  CAS  Google Scholar 

  • Yu, J., & Thorne, J. L. (2006). Dependence among sites in RNA evolution. Molecular Biology and Evolution, 23(8), 1525–1537.

    PubMed  CAS  Google Scholar 

  • Zhao, Z., & Boerwinkle, E. (2002). Neighboring-nucleotide effects on single nucleotide polymorphisms: a study of 2.6 million polymorphisms across the human genome. Genome Research, 12(11), 1679–1686.

    PubMed  CAS  Google Scholar 

  • Zheng, T., Ichiba, T., & Morton, B. R. (2007). Assessing substitution variation across sites in grass chloroplast DNA. Journal of Molecular Evolution, 64(6), 605–613.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

I would like to thank Stijn Vansteelandt for helpful discussions regarding calculation of the decorrelation times. The research leading to these results has received funding from the European Research Council under the European Community’s Seventh Framework Programme (FP7/2007-2013)/ERC Grant agreement no. 260864.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guy Baele.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baele, G. Context-Dependent Evolutionary Models for Non-Coding Sequences: An Overview of Several Decades of Research and an Analysis of Laurasiatheria and Primate Evolution. Evol Biol 39, 61–82 (2012). https://doi.org/10.1007/s11692-011-9139-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11692-011-9139-2

Keywords

Navigation