Skip to main content
Log in

Functional and Genetic Integration in the Skulls of Lake Malawi Cichlids

  • Research Article
  • Published:
Evolutionary Biology Aims and scope Submit manuscript

Abstract

The level of integration present among organismal traits is thought to influence evolutionary potential, and this potential should be affected by the type or types of integration displayed (e.g., functional, developmental, or genetic). Morphological integration is generally high among functionally related traits, but whether this is predominantly determined by genetic architecture, or is instead a result of biomechanical remodeling during development remains poorly understood. We examine this question in Lake Malawi cichlid fishes by combining a finite-element analysis (FEA) of bite force transmission with quantitative genetic analyses of skull morphology in order to test the hypothesis that functionally coupled traits share a common genetic basis. FEA modeling indicates that the profile of the neurocranium affects its ability to resist forces transmitted from the jaws during biting, and suggests a novel role for skull shape in fish feeding mechanics. Quantitative trait loci mapping demonstrates that the functional integration between jaw and neurocranial shape has a genetic basis, and that this association is being driven by alleles inherited from the specialized biting species. Notably, the co-inheritance of these two functionally related traits in our F2 matches patterns of covariation within and between Lake Malawi cichlid species. Across species, jaw and neurocranial shapes covary, but the trend appears strongest among biting species. Similarly, within populations of biting species, the dimensions of the jaw and neurocranium are tightly linked, whereas this correlation disappears within populations of omnivorous and suction feeding fish. These data suggest (1) that either pleiotropy, or physical linkage maintained by selection, underlies the phenotypic integration of these two functionally related traits, and (2) that this pattern of integration may have influenced the radiation of craniofacial morphology in Lake Malawi cichlids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Albertson, R. C., & Kocher, T. D. (2001). Assessing morphological differences in an adaptive trait: A landmark-based morphometric approach. Journal of Experimental Zoology, 289, 385–403.

    Article  PubMed  CAS  Google Scholar 

  • Albertson, R. C., & Kocher, T. D. (2006). Genetic and developmental basis of cichlid trophic diversity. Heredity, 97, 211–221.

    Article  PubMed  CAS  Google Scholar 

  • Albertson, R. C., Markert, J. A., Danley, P. D., & Kocher, T. D. (1999). Phylogeny of a rapidly evolving clade: The cichlid fishes of Lake Malawi, East Africa. Proceedings of the National Academy of Sciences of the United States of America, 96, 5107–5110.

    Article  PubMed  CAS  Google Scholar 

  • Albertson, R. C., Streelman, J. T., & Kocher, T. D. (2003a). Directional selection has shaped the oral jaws of Lake Malawi cichlid fishes. Proceedings of the National Academy of Sciences of the United States of America, 100, 5252–5257.

    Article  PubMed  CAS  Google Scholar 

  • Albertson, R. C., Streelman, J. T., & Kocher, T. D. (2003b). Genetic basis of adaptive shape differences in the cichlid head. Journal of Heredity, 94, 291–301.

    Article  PubMed  CAS  Google Scholar 

  • Albertson, R. C., Streelman, J. T., Kocher, T. D., & Yelick, P. C. (2005). Integration and evolution of the cichlid mandible: The molecular basis of alternate feeding strategies. Proceedings of the National Academy of Sciences of the United States of America, 102, 16287–16292.

    Article  PubMed  CAS  Google Scholar 

  • Armbruster, W. S., Pelabon, C., Hansen, T. F., & Mulder, C. P. H. (2004). Floral integration, modularity, and accuracy: Distinguishing complex adaptations from genetic constraints. In M. Pigliucci & K. Preston (Eds.), Phenotypic integration: Studying the ecology and evolution of complex phenotypes. New York: Oxford University Press.

    Google Scholar 

  • Badyaev, A. V., & Hill, G. E. (2000). The evolution of sexual dimorphism in the house finch. I. Population divergence in morphological covariance structure. Evolution, 54, 1784–1794.

    PubMed  CAS  Google Scholar 

  • Barel, C. D. N. (1983). Toward a constructional morphology of cichlid fishes (Teleostei, Perciformes). Netherlands Journal of Zoology, 33, 357–424.

    Article  Google Scholar 

  • Barel, C. D. N., Witte, F., & van Oijen, M. J. P. (1976). The shape of the skeletal elements in the head of a generalized Haplochromis species: H. elegans Trewavas 1933 (Pisces, Cichlidae). Netherlands Journal of Zoology, 26, 163–265.

    Article  Google Scholar 

  • Beavis, W. D. (1994). The power and deceit of QTL experiments: Lessons from comparative QTL studies (pp. 252–268). In 49th annual corn and sorghum research conference. Washington, DC: American Seed Trade Association.

  • Beavis, W. D. (1998). QTL analyses: Power, precision, and accuracy. In A. H. Paterson (Ed.), Molecular dissection of complex traits (pp. 145–161). Boca Raton: CRC Press.

    Google Scholar 

  • Begin, M., & Roff, D. A. (2003). The constancy of the G matrix through species divergence and the effects of quantitative genetic constraints on phenotypic evolution: A case study in crickets. Evolution, 57, 1107–1120.

    PubMed  Google Scholar 

  • Berg, R. L. (1960). The ecological significance of correlation pleiades. Evolution, 14, 171–180.

    Article  Google Scholar 

  • Berner, D., Adams, D. C., Grandchamp, A. C., & Hendry, A. P. (2008). Natural selection drives patterns of lake-stream divergence in stickleback foraging morphology. Journal of Evolutionary Biology, 21, 1653–1665.

    Article  PubMed  CAS  Google Scholar 

  • Burger, R. (1986). Constraints for the evolution of functionally coupled characters—a nonlinear-analysis of a phenotypic model. Evolution, 40, 182–193.

    Article  Google Scholar 

  • Chase, K., Carrier, D. R., Adler, F. R., Jarvik, T., Ostrander, E. A., Lorentzen, T. D., et al. (2002). Genetic basis for systems of skeletal quantitative traits: Principal component analysis of the canid skeleton. Proceedings of the National Academy of Sciences of the United States of America, 99, 9930–9935.

    Article  PubMed  CAS  Google Scholar 

  • Chenoweth, S. F., Rundle, H. D., & Blows, M. W. (2010). The contribution of selection and genetic constraints to phenotypic divergence. American Naturalist, 175, 186–196.

    Article  PubMed  Google Scholar 

  • Cheverud, J. M. (1984). Developmental integration and the evolution of pleiotropy. American Zoologist, 36, 44–50.

    Google Scholar 

  • Cheverud, J. M. (1988). The evolution of genetic correlation and developmental constraints. In G. de Jong (Ed.), Population genetics and evolution (pp. 94–101). Berlin: Springer.

    Google Scholar 

  • Cheverud, J. M. (1996). Quantitative genetic analysis of cranial morphology in the cotton-top (Saguinus oedipus) and saddle-back (S-fuscicollis) tamarins. Journal of Evolutionary Biology, 9, 5–42.

    Article  Google Scholar 

  • Cheverud, J. M. (2004). Modular pleiotropic effects of quantitative trait loci of morphological traits. In G. Schlosser & G. P. Wagner (Eds.), Modularity in development and evolution (pp. 132–153). Chicago: The University of Chicago Press.

    Google Scholar 

  • Cheverud, J. M., Ehrich, T. H., Vaughn, T. T., Koreishi, S. F., Linsey, R. B., & Pletscher, L. S. (2004). Pleiotropic effects on mandibular morphology II: Differential epistasis and genetic variation in morphological integration. Journal of Experimental Zoology Part B-Molecular and Developmental Evolution, 302B, 424–435.

    Article  CAS  Google Scholar 

  • Cheverud, J. M., Routman, E. J., & Irschick, D. J. (1997). Pleiotropic effects of individual gene loci on mandibular morphology. Evolution, 51, 2006–2016.

    Article  Google Scholar 

  • Christians, J. K., & Senger, L. K. (2007). Fine mapping dissects pleiotropic growth quantitative trait locus into linked loci. Mammalian Genome, 18, 240–245.

    Article  PubMed  CAS  Google Scholar 

  • Clausen, J., & Heisey, W. M. (1960). The balance between coherence and variation in evolution. Proceedings of the National Academy of Sciences of the United States of America, 46, 494–506.

    Article  PubMed  CAS  Google Scholar 

  • Collar, D. C., O’Meara, B. C., Wainwright, P. C., & Near, T. J. (2009). Piscivory limits diversification of feeding morphology in centrarchid fishes. Evolution, 63, 1557–1573.

    Article  PubMed  Google Scholar 

  • Colosimo, P. F., Hosemann, K. E., Balabhadra, S., Villarreal, G., Jr, Dickson, M., Grimwood, J., et al. (2005). Widespread parallel evolution in sticklebacks by repeated fixation of Ectodysplasin alleles. Science, 307, 1928–1933.

    Article  PubMed  CAS  Google Scholar 

  • Cooper, W. J., Parsons, K., McIntyre, A., Kern, B., McGee-Moore, A., & Albertson, R. C. (2010). Bentho-pelagic divergence of cichlid feeding architecture was prodigious and consistent during multiple adaptive radiations within african rift-lakes. PLoS One, 5, e9551.

    Article  PubMed  CAS  Google Scholar 

  • Cooper, W. J., & Westneat, M. W. (2009). Form and function of damselfish skulls: Rapid and repeated evolution into a limited number of trophic niches. BMC Evolutionary Biology, 9.

  • Cresko, W. A., Amores, A., Wilson, C., Murphy, J., Currey, M., Phillips, P., et al. (2004). Parallel genetic basis for repeated evolution of armor loss in Alaskan threespine stickleback populations. Proceedings of the National Academy of Sciences of the United States of America, 101(16), 6050–6055.

    Article  PubMed  CAS  Google Scholar 

  • Danley, P. D., & Kocher, T. D. (2001). Speciation in rapidly diverging systems: Lessons from Lake Malawi. Molecular Ecology, 10, 1075–1086.

    Article  PubMed  CAS  Google Scholar 

  • De Visser, J., & Barel, C. D. N. (1998). The expansion apparatus in fish heads, a 3-D kinetic deduction. Netherlands Journal of Zoology, 48, 361–395.

    Article  Google Scholar 

  • Drake, G. A., & Klingenberg, C. P. (2010). Large-scale diversification of skull shape in domestic dogs: Disparity and modularity. The American Naturalist, 175, 289–301.

    Article  PubMed  Google Scholar 

  • Dumont, E. R., Grosse, I. R., & Slater, G. (2009). Requirements for comparing the performance of finite element models of biological structures. Journal of Theoretical Biology, 256, 96–103.

    Article  PubMed  CAS  Google Scholar 

  • Dumont, E. R., Piccirillo, J., & Grosse, I. R. (2005). Finite-element analysis of biting behavior and bone stress in the facial skeletons of bats. The Anatomical Record Part A: Discoveries in Molecular, Cellular, and Evolutionary Biology, 283, 319–330.

    Article  Google Scholar 

  • Eden, M. (Ed.). (1967). Inadequacies of Neo-Darwinian evolution as a scientific theory. Philadelphia: Wistar Institute Press.

    Google Scholar 

  • Ehrich, T. H., Vaughn, T. T., Koreishi, S. F., Linsey, R. B., Pletscher, L. S., & Cheverud, J. M. (2003). Pleiotropic effects on mandibular morphology I. Developmental morphological integration and differential dominance. Journal of Experimental Zoology Part B: Molecular and Developmental Evolution, 296, 58–79.

    Google Scholar 

  • Eschmeyer, W. N., & Fricke, R. (2011). Catalog of fishes electronic version.

  • Genner, M. J., Seehausen, O., Lunt, D. H., Joyce, D. A., Shaw, P. W., Carvalho, G. R., et al. (2007). Age of cichlids: New dates for ancient lake fish radiations. Molecular Biology and Evolution, 24, 1269–1282.

    Article  PubMed  CAS  Google Scholar 

  • Griswold, C. K. (2006). Pleiotropic mutation, modularity and evolvability. Evolution & Development, 8, 81–93.

    Article  Google Scholar 

  • Hallgrimsson, B., Willmore, K. E., Dorval, C. J., & Cooper, D. M. L. (2004). Craniofacial variability and modularity in macaques and mice. Journal of Experimental Zoology (molecular and developmental evolution), 302B, 207–225.

    Article  Google Scholar 

  • Hansen, T. F. (2003). Is modularity necessary for evolvability? Remarks on the relationship between pleiotropy and evolvability. Biosystems, 69, 83–94.

    Article  PubMed  Google Scholar 

  • Hansen, T. F., Pelabon, C., Armbruster, W. S., & Carlson, M. L. (2003). Evolvability and genetic constraint in Dalechampia blossoms: components of variance and measures of evolvability. Journal of Evolutionary Biology, 16, 754–766.

    Article  PubMed  Google Scholar 

  • Hendrikse, J. L., Parsons, T. E., & Hallgrimsson, B. (2007). Evolvability as the proper focus of evolutionary developmental biology. Evolution & Development, 9, 393–401.

    Article  Google Scholar 

  • Hohenlohe, P. A., Bassham, S., Etter, P. D., Stiffler, N., Johnson, E. A., & Cresko, W. A. (2010). Population genomics of parallel adaptation in threespine stickleback using sequenced RAD tags. PLoS Genet, 6, e1000862.

    Article  PubMed  CAS  Google Scholar 

  • Holzman, R., Day, S. W., Mehta, R. S., & Wainwright, P. C. (2008). Integrating the determinants of suction feeding performance in centrarchid fishes. Journal of Experimental Biology, 211, 3296–3305.

    Article  PubMed  Google Scholar 

  • Hulsey, C. D., Mims, M. C., Parnell, N. F., & Streelman, J. T. (2010). Comparative rates of lower jaw diversification in cichlid adaptive radiations. Journal of Evolutionary Biology, 23, 1456–1467.

    Article  PubMed  CAS  Google Scholar 

  • Hunt, G. (2007). Evolutionary divergence in directions of high phenotypic variance in the ostracode genus Poseidonamicus. Evolution, 61, 1560–1576.

    Article  PubMed  Google Scholar 

  • Joyce, D. A., Lunt, D. H., Genner, M. J., Turner, G. F., Bills, R., & Seehausen, O. (2011). Repeated colonization and hybridization in Lake Malawi cichlids. Current Biology, 21(3), R108–R109.

    Article  PubMed  CAS  Google Scholar 

  • Kimmel, C. B., Miller, C. T., & Moens, C. B. (2001). Specification and morphogenesis of the zebrafish larval head skeleton. Developmental Biology, 233, 239–257.

    Article  PubMed  CAS  Google Scholar 

  • Kimmel, C. B., Ullmann, B., Walker, C., Wilson, C., Currey, M., Phillips, P. C., et al. (2005). Evolution and development of facial bone morphology in threespine sticklebacks. Proceedings of the National Academy of Sciences of the United States of America, 102, 5791–5796.

    Article  PubMed  CAS  Google Scholar 

  • Klingenberg, C. P. (2008). Morphological integration and developmental modularity. Annual Review of Ecology, Evolution, and Systematics, 39, 115–132.

    Article  Google Scholar 

  • Klingenberg, C. P. (2010). Evolution and development of shape: Integrating quantitative approaches. Nature Reviews Genetics, 11, 623–635.

    PubMed  CAS  Google Scholar 

  • Klingenberg, C. P., Leamy, L. J., & Cheverud, J. M. (2004). Integration and modularity of quantitative trait locus effects on geometric shape in the mouse mandible. Genetics, 166, 1909–1921.

    Article  PubMed  CAS  Google Scholar 

  • Klingenberg, C. P., Leamy, L. J., Routman, E. J., & Cheverud, J. M. (2001). Genetic architecture of mandible shape in mice: Effects of quantitative trait loci analyzed by geometric morphometrics. Genetics, 157, 785–802.

    PubMed  CAS  Google Scholar 

  • Korff, W. L., & Wainwright, P. C. (2004). Motor pattern control for increasing crushing force in the striped burrfish (Chilomycterus schoepfi). Zoology, 107, 335–346.

    Article  PubMed  Google Scholar 

  • Kornfield, I., & Smith, P. F. (2000). African cichlid fishes: Model systems for evolutionary biology. Annual Review of Ecology and Systematics, 31, 163–+.

    Google Scholar 

  • Leamy, L. J., Klingenberg, C. P., Sherratt, E., Wolf, J. B., & Cheverud, J. M. (2008). A search for quantitative trait loci exhibiting imprinting effects on mouse mandible size and shape. Heredity, 101, 518–526.

    Article  PubMed  CAS  Google Scholar 

  • Liem, K. F. (1991). Functional morphology. In M. H. A. Keenleyside (Ed.), Cichlid fishes: behavior, ecology and evolution (pp. 129–150). London: Chapman and Hall.

    Google Scholar 

  • Loh, Y. H., Katz, L. S., Mims, M. C., Kocher, T. D., Yi, S. V., & Streelman, J. T. (2008). Comparative analysis reveals signatures of differentiation amid genomic polymorphism in Lake Malawi cichlids. Genome Biology, 9(7), R113.

    Article  PubMed  CAS  Google Scholar 

  • Maddison, W. P., & Maddison, D. R. (2008). Mesquite: A modular system for evolutionary analysis.

  • Manly, B. F. J. (2006). Randomization, bootstrap and Monte Carlo methods in biology. Boca Raton: Chapman and Hall/CRC Press.

    Google Scholar 

  • Mann, K. A., Lee, J., Arrington, S. A., Damron, T. A., & Allen, M. J. (2008). Predicting distal femur bone strength in a murine model of tumor osteolysis. Clinical Orthopaedics and Related Research, 466, 1271–1278.

    Article  PubMed  Google Scholar 

  • Marquez, E. J. (2008). A statistical framework for testing modularity in multidimensional data. Evolution, 62, 2688–2708.

    Article  PubMed  Google Scholar 

  • Marroig, G., & Cheverud, J. M. (2005). Size as a line of least evolutionary resistance: Diet and adaptive morphological radiation in new world monkeys. Evolution, 59, 1128–1142.

    PubMed  Google Scholar 

  • Maynard Smith, J., Burian, R., Kauffman, S., Alberch, P., Campbell, J., Goodwin, B., et al. (1985). Developmental constraint and evolution. Quarterly Review of Biology, 60, 265–287.

    Article  Google Scholar 

  • Merila, J., & Bjorklund, M. (1999). Population divergence and morphometric integration in the greenfinch (Carduelis chloris)—evolution against the trajectory of least resistance? Journal of Evolutionary Biology, 12, 103–112.

    Article  Google Scholar 

  • Mezey, J. G., Cheverud, J. M., & Wagner, G. P. (2000). Is the genotype-phenotype map modular? A statistical approach using mouse quantitative trait loci data. Genetics, 156, 305–311.

    PubMed  CAS  Google Scholar 

  • Midford, P. E., Garland, T., & Maddison, W. P. (2007). PDAP:PDTREE version 1.15: A translation of the PDTREE application of Garland et al.’s Phenotypic Diversity Analysis Programs.

  • Miller, R. G. (1974). The jacknife: A review. Biometrika, 61, 1–15.

    Google Scholar 

  • Mims, M. C., Hulsey, C. D., Fitzpatrick, B. M., & Streelman, J. T. (2010). Geography disentangles introgression from ancestral polymorphism in Lake Malawi cichlids. Molecular Ecology, 19, 940–951.

    Article  PubMed  Google Scholar 

  • MitchellOlds, T. (1996). Pleiotropy causes long-term genetic constraints on life-history evolution in Brassica rapa. Evolution, 50, 1849–1858.

    Article  Google Scholar 

  • Monteiro, L. R., Bonato, V., & dos Reis, S. F. (2005). Evolutionary integration and morphological diversification in complex morphological structures: mandible shape divergence in spiny rats (Rodentia, Echimyidae). Evolution and Development, 7, 429–439.

    Article  PubMed  Google Scholar 

  • Moran, P., & Kornfield, I. (1993). Retention of an ancestral polymorphism in the mbuna species flock (Teleostei: Cichlidae) of Lake Malawi. Molecular Biology and Evolution, 10(5), 1015–1029.

    CAS  Google Scholar 

  • Mow, V. C., & Hayes, W. C. (1991). Basic orthopaedic biomechanics. New York: Raven Press.

    Google Scholar 

  • Murren, C. J. (2002). Phenotypic integration in plants. Plant Species Biology, 17, 89–99.

    Article  Google Scholar 

  • Murren, C. J., & Kover, P. X. (2004). QTL mapping: A first step toward an understanding of molecular genetic mechanisms behind phenotypic complexity/integration. In M. Pigliucci & K. Preston (Eds.), Phenotypic integration: Studying the ecology and evolution of complex phenotypes (pp. 195–212). New York: Oxford University Press.

    Google Scholar 

  • Olson, E. N., & Miller, R. L. (1958). Morphological integration. Chicago: University of Chicago Press.

    Google Scholar 

  • Otten, E. (1983). The jaw mechanism during growth of a generalized haplochromis species—H-Elegans Trewavas 1933 (Pisces, Cichlidae). Netherlands Journal of Zoology, 33, 55–98.

    Article  Google Scholar 

  • Otten, E. (1985). Proportions of the jaw mechanism of cichlid fishes changes and their meaning. Acta Biotheoretica, 34, 207–217.

    Article  Google Scholar 

  • Parker, A., & Kornfield, I. (1997). Evolution of the mitochondrial DNA control region in the mbuna (Cichlidae) species flock of Lake Malawi, East Africa. Journal of Molecular Evolution, 45, 70–83.

    Article  PubMed  CAS  Google Scholar 

  • Pavlicev, M., Cheverud, J. M., & Wagner, G. P. (2010). Evolution of adaptive phenotypic variation patterns by direct selection for evolvability. Proceedings of Biological Sciences Nov 24 [Epub ahead of print].

  • Pavlicev, M., Kenney-Hunt, J. P., Norgard, E. A., Roseman, C. C., Wolf, J. B., & Cheverud, J. M. (2008). Genetic variation in pleiotropy: Differential epistasis as a source of variation in the allometric relationship between long bone lengths and body weight. Evolution, 62, 199–213.

    PubMed  Google Scholar 

  • Peichel, C. L., Nereng, K. S., Ohgi, K. A., Cole, B. L., Colosimo, P. F., Buerkle, C. A., et al. (2001). The genetic architecture of divergence between threespine stickleback species. Nature, 414, 901–905.

    Article  PubMed  CAS  Google Scholar 

  • Pepper, J. W. (2003). The evolution of evolvability in genetic linkage patterns. Biosystems, 69, 115–126.

    Article  PubMed  CAS  Google Scholar 

  • Piotrowski, T., Schilling, T. F., Brand, M., Jiang, Y. J., Heisenberg, C. P., Beuchle, D., et al. (1996). Jaw and branchial arch mutants in zebrafish II: Anterior arches and cartilage differentiation. Development, 123, 345–356.

    PubMed  CAS  Google Scholar 

  • Potvin, C., & Roff, D. A. (1993). Distribution-free and robust statistical-methods—viable alternatives to parametric statistics. Ecology, 74, 1617–1628.

    Article  Google Scholar 

  • Price, A. H. (2006). Believe it or not, QTLs are accurate! Trends Plant Science, 11, 213–216.

    Article  CAS  Google Scholar 

  • Protas, M., Conrad, M., Gross, J. B., Tabin, C., & Borowsky, R. (2007). Regressive evolution in the Mexican cave tetra, Astyanax mexicanus. Current Biology, 17, 452–454.

    Article  PubMed  CAS  Google Scholar 

  • Protas, M., Tabansky, I., Conrad, M., Gross, J. B., Vidal, O., Tabin, C. J., et al. (2008). Multi-trait evolution in a cave fish, Astyanax mexicanus. Evolution & Development, 10, 196–209.

    Article  Google Scholar 

  • Raff, R. (1996). The shape of life: Genes, development, and the evolution of animal form. Chicago: University of Chicago Press.

    Google Scholar 

  • Renaud, S., Auffray, J. C., & Michaux, J. (2006). Conserved phenotypic variation patterns, evolution along lines of least resistance, and departure due to selection in fossil rodents. Evolution, 60, 1701–1717.

    PubMed  Google Scholar 

  • Renaud, S., Pantalacci, S., Quere, J. P., Laudet, V., & Auffreay, J. C. (2009). Developmental constraints revealed by co-variation within and among molar rows in two murine rodents. Evolution and Development, 11, 590–602.

    Article  PubMed  Google Scholar 

  • Ribbink, A. J., Marsh, A. C., Ribbink, C. C., & Sharp, B. J. (1983). A preliminary survey of the cichlid fishes of rocky habitats in Lake Malawi. South African Journal of Zoology, 18, 149–308.

    Google Scholar 

  • Rice, A. N., Cooper, W. J., & Westneat, M. W. (2008). Diversification of coordination patterns during feeding behaviour in cheiline wrasses. Biological Journal of the Linnean Society, 93, 289–308.

    Article  Google Scholar 

  • Roberts, R. B., Ser, J. R., & Kocher, T. D. (2009). Sexual conflict resolved by invasion of a novel sex determiner in Lake Malawi cichlid fishes. Science, 326, 998–1001.

    Article  PubMed  CAS  Google Scholar 

  • Roff, D. (2002). Comparing G matrices: A MANOVA approach. Evolution, 56, 1286–1291.

    PubMed  Google Scholar 

  • Salzburger, W., Mack, T., Verheyen, E., & Meyer, A. (2005). Out of Tanganyika: Genesis, explosive speciation, key-innovations and phylogeography of the haplochromine cichlid fishes. BMC Evolutionary Biology, 5.

  • Salzburger, W., Meyer, A., Baric, S., Verheyen, E., & Sturmbauer, C. (2002). Phylogeny of the Lake Tanganyika Cichlid species flock and its relationship to the Central and East African Haplochromine Cichlid fish faunas. Systematic Biology, 51, 113–135.

    Article  PubMed  Google Scholar 

  • Schilling, T. F., & Kimmel, C. B. (1997). Musculoskeletal patterning in the pharyngeal segments of the zebrafish embryo. Development, 124, 2945–2960.

    PubMed  CAS  Google Scholar 

  • Schilling, T. F., Piotrowski, T., Grandel, H., Brand, M., Heisenberg, C. P., Jiang, Y. J., et al. (1996). Jaw and branchial arch mutants in zebrafish I: Branchial arches. Development, 123, 329–344.

    PubMed  CAS  Google Scholar 

  • Schlichting, C. D. (1989). Phenotypic integration and environmental change. BioScience, 39, 460–464.

    Article  Google Scholar 

  • Schlichting, C. D., & Pigliucci, M. (1998). Phenotypic evolution: A reaction norm perspective. Sunderland, MA: Sinauer Associates.

    Google Scholar 

  • Schlosser, G. (2004). The role of modules in development and evolution. In G. Schlosser & G. P. Wagner (Eds.), Modularity in development and evolution (pp. 519–582). Chicago: The University of Chicago Press.

    Google Scholar 

  • Schluter, D. (1996). Adaptive radiation along genetic lines of least resistance. Evolution, 50, 1766–1774.

    Article  Google Scholar 

  • Schluter, D. (2000). The ecology of adaptive radiation. Oxford: Oxford University Press.

    Google Scholar 

  • Seehausen, O. (2004). Hybridization and adaptive radiation. Trends in Ecology & Evolution, 19(4), 198–207.

    Article  Google Scholar 

  • Shapiro, M. D., Marks, M. E., Peichel, C. L., Blackman, B. K., Nereng, K. S., Jonsson, B., et al. (2004). Genetic and developmental basis of evolutionary pelvic reduction in threespine sticklebacks. Nature, 428, 717–723.

    Article  PubMed  CAS  Google Scholar 

  • Slater, G. J., Dumont, E. R., & Van Valkenburgh, B. (2009). Implications of predatory specialization for cranial form and function in canids. Journal of Zoology, 278, 181–188.

    Article  Google Scholar 

  • Smith, P. F., Konings, A., & Kornfield, I. (2003). Hybrid origin of a cichlid population in Lake Malawi: Implications for genetic variation and species diversity. Molecular Ecology, 12, 2497–2504.

    Article  PubMed  Google Scholar 

  • Stauffer, J. R., Bowers, N. J., Kocher, T. D., & McKaye, K. R. (1996). Evidence of hybridization between Cynotilapia afra and Pseudotropheus zebra (Teleostei: Cichlidae) following an intralacustrine translocation in Lake Malawi. Copeia, 203–208.

  • Stiassny, M. L. J., & Meyer, A. (1999). Cichlids of the Rift lakes. Scientific American, 280, 64–69.

    Article  Google Scholar 

  • Strait, D. S., Weber, G. W., Neubauer, S., Chalk, J., Richmond, B. G., Lucas, P. W., et al. (2009). The feeding biomechanics and dietary ecology of Australopithecus africanus. Proceedings of the National Academy of Sciences of the United States of America, 106, 2124–2129.

    Article  PubMed  CAS  Google Scholar 

  • Strait, D. S., Wright, B. W., Richmond, B. G., Ross, C. F., Dechow, P. C., Spencer, M. A., et al. (2006). Craniofacial strain patterns during premolar loading: Implications for human evolution. In C. J. Vinyard, M. J. Ravosa, & C. E. Wall (Eds.), Primate craniofacial function and biology (pp. 173–198). New York: Springer.

    Google Scholar 

  • Suto, J. (2009). Identification of multiple quantitative trait loci affecting the size and shape of the mandible in mice. Mammalian Genome, 20, 1–13.

    Article  PubMed  CAS  Google Scholar 

  • Tanner, J. B., Dumont, E. R., Sakai, S. T., Lundrigan, B. L., & Holekamp, K. E. (2008). Of arcs and vaults: The biomechanics of bone-cracking in spotted hyenas (Crocuta crocuta). Biological Journal of the Linnean Society, 95, 246–255.

    Article  Google Scholar 

  • Turner, G. F., Seehausen, O., Knight, M. E., Allender, C. J., & Robinson, R. L. (2001). How many species of cichlid fishes are there in African lakes? Molecular Ecology, 10, 793–806.

    Article  PubMed  CAS  Google Scholar 

  • Van Ooijen, J. W., Boer, M. P., Jansen, R. C., & Maliepaard, C. (2002). QTLMap 4.0. Pp. Software for the calculation of QTL positions on genetic maps. Wageningen, The Netherlands: Plant Research International.

    Google Scholar 

  • Van Ooijen, J. W., & Voorrips, R. E. (2001). JoinMap 3.0. Pp. Software for the calculation of genetic linkage maps. Wageningen, The Netherlands: Plant Research International.

    Google Scholar 

  • Verheyen, E., Salzburger, W., Snoeks, J., & Meyer, A. (2003). Origin of the superflock of cichlid fishes from Lake Victoria, East Africa. Science, 300, 325–329.

    Article  PubMed  CAS  Google Scholar 

  • Wada, N., Javidan, Y., Nelson, S., Carney, T. J., Kelsh, R. N., & Schilling, T. F. (2005). Hedgehog signaling is required for cranial neural crest morphogenesis and chondrogenesis at the midline in the zebrafish skull. Development, 132, 3977–3988.

    Article  PubMed  CAS  Google Scholar 

  • Wagner, G. P. (1984). Coevolution of functionally constrained characters: Prerequisites of adaptive versatility. BioSystems, 17, 51–55.

    Article  PubMed  CAS  Google Scholar 

  • Wagner, G. P. (1996). Homologues, natural kinds and the evolution of modularity. American Zoologist, 36, 36–43.

    Google Scholar 

  • Wagner, G. P., & Altenberg, L. (1996). Perspective: Complex adaptations and the evolution of evolvability. Evolution, 50, 967–976.

    Article  Google Scholar 

  • Wagner, G. P., & Mezey, J. G. (2004). The role of genetic architecture constraints in the origin of variational modularity. In G. Schlosser & G. P. Wagner (Eds.), Modularity in development and evolution (pp. 338–358). Chicago: The University of Chicago Press.

    Google Scholar 

  • Wainwright, P. C., Alfaro, M. E., Bolnick, D. I., & Hulsey, C. D. (2005). Many-to-one mapping of form to function: A general principle in organismal design? Integrative and Comparative Biology, 45, 256–262.

    Article  PubMed  Google Scholar 

  • Wainwright, P. C., Ferry-Graham, L. A., Waltzek, T. B., Carroll, A. M., Hulsey, C. D., & Grubich, J. R. (2001). Evaluating the use of ram and suction during prey capture by cichlid fishes. Journal of Experimental Biology, 204, 3039–3051.

    PubMed  CAS  Google Scholar 

  • Wainwright, P. C., & Richard, B. A. (1995). Predicting patterns of prey use from morphology of fishes. Environmental Biology of Fishes, 44, 97–113.

    Article  Google Scholar 

  • Westneat, M. W. (1990). Feeding mechanics of teleost fishes (Labridae, Perciformes)—a test of 4-bar linkage models. Journal of Morphology, 205, 269–295.

    Article  Google Scholar 

  • Westneat, M. W. (1995). Feeding, function, and phylogeny—analysis of historical biomechanics in labrid fishes using comparative methods. Systematic Biology, 44, 361–383.

    Google Scholar 

  • Westneat, M. W. (2003). A biomechanical model for analysis of muscle force, power output and lower jaw motion in fishes. Journal of Theoretical Biology, 223, 269–281.

    Article  PubMed  Google Scholar 

  • Westneat, M. W. (2006). Skull biomechanics and suction feeding in fishes. In R. E. Shadwick & G. V. Lauder (Eds.), Fish biomechanics (pp. 29–75). San Diego, CA: Elsevier Academic Press.

    Google Scholar 

  • Westneat, M. W., Alfaro, M. E., Wainwright, P. C., Bellwood, D. R., Grubichl, J. R., Fessler, J. L., et al. (2005). Local phylogenetic divergence and global evolutionary convergence of skull function in reef fishes of the family Labridae. Proceedings of the Royal Society B-Biological Sciences, 272, 993–1000.

    Article  CAS  Google Scholar 

  • Winther, R. G. (2001). Varieties of modules: Kinds, levels, origins, and behavors. Journal of Experimental Zoology (molecular and developmental evolution), 291, 116–129.

    Article  CAS  Google Scholar 

  • Young, K. A., Snoeks, J., & Seehausen, O. (2009). Morphological diversity and the roles of contingency, chance and determinism in african cichlid radiations. PLoS One, 4, e4740.

    Article  PubMed  CAS  Google Scholar 

  • Zelditch, M. L., Wood, A. R., & Swiderski, D. L. (2009). Building Developmental Integration into Functional Systems: Function-Induced Integration of Mandibular Shape. Evolutionary Biology, 36, 71–87.

    Article  Google Scholar 

Download references

Acknowledgments

We would like to thank J.T. Streelman and N. Parnell for providing the most recent Malawi cichlid linkage map for use in this study, and J.T. Streelman and E.R. Dumont for insightful comments on drafts of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Craig Albertson.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 50 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cooper, W.J., Wernle, J., Mann, K. et al. Functional and Genetic Integration in the Skulls of Lake Malawi Cichlids. Evol Biol 38, 316–334 (2011). https://doi.org/10.1007/s11692-011-9124-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11692-011-9124-9

Keywords

Navigation