Skip to main content
Log in

Shift in Thermal Preferences of Female Oviparous Common Lizards During Egg Retention: Insights into the Evolution of Reptilian Viviparity

  • Research Article
  • Published:
Evolutionary Biology Aims and scope Submit manuscript

Abstract

Pregnant female Zootoca vivipara select lower body temperatures than males or nonpregnant females, and this shift in the thermal preferendum is believed to be related to optimising the conditions for embryogenesis. Thus, subjecting embryos to the higher temperature selected by males and non-gravid females might have detrimental effects on embryonic development and on hatchling fitness, according to predictions of the “maternal manipulation” hypothesis on the evolution of viviparity. To test the role of gestation environment on embryonic development in oviparous Z. vivipara, we kept a number of gravid females at the temperature selected by non-gravid females in a laboratory thermal gradient, whereas control females were allowed to regulate their body temperature without restrictions. Developmental stage at oviposition was more advanced for embryos of the experimental clutches, which were heavier than those of the control group. Forced gestation temperature also affected hatching success (58.62% in the experimental treatment vs. 97.37% in the control group). In addition, hatchlings from females subjected to high temperatures during pregnancy were smaller, had shorter head length and performed worse in running trials. Our results fulfil the prediction of the “maternal manipulation” hypothesis, and suggest that the shift in female body temperature during pregnancy optimizes embryogenesis and hatchling phenotype by avoiding the negative effects of the high incubation temperatures preferred by non-gravid females.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Andrews, R. M., Mathies, T., & Warner, D. A. (2000). Effect of incubation temperature on morphology, growth, and survival of juvenile Sceloporus undulatus. Herpetological Monographs, 14, 420–431.

    Article  Google Scholar 

  • Andrews, R. M., & Rose, B. R. (1994). Evolution of viviparity: constraints on egg retention. Physiological Zoology, 67, 1006–1024.

    Google Scholar 

  • Angilletta, M. J., Jr, Winters, R. S., & Dunham, A. E. (2000). Thermal effects on the energetics of lizard embryos: implications for hatchling phenotypes. Ecology, 81, 2957–2968.

    Article  Google Scholar 

  • Arrayago, M. J., Bea, A., & Heulin, B. (1996). Hybridization experiment between oviparous and viviparous strains of Lacerta vivipara: A new insight into the evolution of viviparity in reptiles. Herpetologica, 52, 333–342.

    Google Scholar 

  • Atkinson, D. (1994). Temperature and organism size: a biological law for ectotherms? Advances in Ecological Research, 25, 1–58.

    Article  Google Scholar 

  • Beuchat, C. A. (1988). Temperature effects during gestation in a viviparous lizard. Journal of Thermal Biology, 13, 135–142.

    Article  Google Scholar 

  • Birchard, G. F. (2004). Effects of incubation temperature. In D. C. Deeming (Ed.), Reptilian incubation: environment, evolution, and behavior (pp. 103–123). Nottingham: Nottigham University Press.

    Google Scholar 

  • Blackburn, D. G. (1995). Saltationist and punctuated equilibrium models for the evolution of viviparity and placentation. Journal of Theoretical Biology, 174, 199–216.

    Article  PubMed  CAS  Google Scholar 

  • Braña, F. (1993). Shifts in body temperature and escape behaviour of female Podarcis muralis during pregnancy. Oikos, 66, 216–222.

    Article  Google Scholar 

  • Braña, F. (1996). Sexual dimorphism in lacertid lizards: male head increase vs. female abdomen increase? Oikos, 75, 511–523.

    Article  Google Scholar 

  • Braña, F. (2008). Sex of incubation neighbours influences hatchling sexual phenotypes in an oviparous lizard. Oecologia, 156, 275–280.

    Article  PubMed  Google Scholar 

  • Braña, F., Bea, A., & Arrayago, M. J. (1991). Egg retention in lacertid lizards: Relationships with reproductive ecology and the evolution of viviparity. Herpetologica, 47, 218–226.

    Google Scholar 

  • Braña, F., & Ji, X. (2000). Influence of incubation temperature on morphology, locomotor performance, and early growth of hatchling wall lizards (Podarcis muralis). Journal of Experimental Zoology, 286, 422–433.

    Article  PubMed  Google Scholar 

  • Braña, F., & Ji, X. (2007). The selective basis for increased egg retention: early incubation temperature determines hatchling phenotype in wall lizards (Podarcis muralis). Biological Journal of the Linnean Society, 92, 441–447.

    Article  Google Scholar 

  • Clobert, J., Oppliger, A., Sorci, G., Ernande, B., Swallow, J. G., & Garland, T., Jr. (2000). Trade-offs in phenotypic traits: endurance at birth, growth, survival, predation and susceptibility to parasitism in a lizard, Lacerta vivipara. Functional Ecology, 14, 675–684.

    Article  Google Scholar 

  • Daut, E. F., & Andrews, R. M. (1993). The effect of pregnancy on selected body temperatures of the viviparous lizard Chalcides ocellatus. Journal of Herpetology, 27, 6–13.

    Article  Google Scholar 

  • Dhouailly, D., & Saxod, R. (1974). Les stades du développement de Lacerta muralis Laurent entre la ponte et l’éclosion. Bulletin de La Societe Zoologique de France, 99, 489–494.

    Google Scholar 

  • Du, W., & Ji, X. (2006). Effects of constant and fluctuating temperatures on egg survival and hatchling traits in the northern grass lizard (Takydromus septentrionalis, Lacertidae). Journal of Experimental Zoology, 305, 47–54.

    PubMed  Google Scholar 

  • Dufaure, J. P., & Hubert, J. (1961). Table de développement du lézard vivipare: Lacerta (Zootoca) vivipara Jacquin. Archives Anatomie Microscopie Morphologie Experemental, 50, 309–328.

    Google Scholar 

  • Garland, T., Jr., Hankins, E., & Huey, R. B. (1990). Locomotor capacity and social dominance in male lizards. Functional Ecology, 4, 243–250.

    Article  Google Scholar 

  • Garland, T., Jr., & Losos, J. B. (1994). Ecological morphology of locomotor performance in squamate reptiles. In P. C. Wainwright & S. M. Reilly (Eds.), Ecological morphology. Integrative Organismal Biology (pp. 240–302). Chicago: University of Chicago Press.

    Google Scholar 

  • Gvoždík, L., & Castilla, A. M. (2001). A comparative study of preferred body temperatures and critical thermal tolerance limits among populations of Zootoca viivpara (Squamata: Lacertidae) along an altitudinal gradient. Journal of Herpetology, 35, 486–492.

    Article  Google Scholar 

  • Gvoždík, L., & Van Damme, R. (2003). Evolutionary maintenance of sexual dimorphism in head size in the lizard Zootoca vivipara: A test of two hypotheses. Journal of Zoology, 259, 7–13.

    Article  Google Scholar 

  • Harlow, P. S. (1996). A harmless technique for sexing hatchling lizards. Herpetological Review, 27, 71–72.

    Google Scholar 

  • Herrel, A., Van Damme, R., Vanhooydonck, B., & De Vree, F. (2001). The implications of bite performance for diet in two species of lacertid lizards. Canadian Journal of Zoology, 79, 662–670.

    Article  Google Scholar 

  • Heulin, B., Arrayago, M. J., Bea, A., & Braña, F. (1992). Caractéristiques de la coquille des œufs chez la souche hybride (ovipare x vivipare) du lézard Lacerta vivipara. Canadian Journal of Zoology, 70, 2242–2246.

    Article  Google Scholar 

  • Hubert, J. (1985). Embryology of the Squamata. In C. Gans & F. Billet (Eds.), Biology of the Reptilia, Development B (Vol. 15, pp. 1–34). New York: Wiley.

    Google Scholar 

  • Ji, X., Lin, L., Luo, L., Lu, H., Gao, J., & Han, J. (2006). Gestation temperature affects sexual phenotype, morphology, locomotor performance, and growth of neonatal brown forest skinks, Sphenomorphus indicus.

  • Le Galliard, J. F., Clobert, J., & Ferrière, R. (2004). Physical performance and Darwinian fitness in lizards. Nature, 432, 502–505.

    Article  PubMed  CAS  Google Scholar 

  • Mathies, T., & Andrews, R. (1995). Thermal and reproductive biology of high and low elevation populations of the lizard Sceloporus scalaris: implications for the evolution of viviparity. Oecologia, 104, 101–111.

    Article  Google Scholar 

  • Mathies, T., & Andrews, R. (1997). Influence of pregnancy on the thermal biology of the lizard, Sceloporus jarrovi: Why do pregnant females exhibit low body temperatures? Functional Ecology, 11, 498–507.

    Article  Google Scholar 

  • Packard, G. C. (1991). Physiological and ecological importance of water to embryos of oviparous reptiles. In D. C. Deeming & M. W. J. Ferguson (Eds.), Egg incubation: Its effects on embryonic development in birds and reptiles (pp. 213–228). Cambridge: Cambridge University Press.

    Chapter  Google Scholar 

  • Packard, G. C., & Packard, M. J. (1988). The physiological ecology of reptilian eggs and embryos. In C. Gans & R. B. Huey (Eds.), Biology of the reptilia (Vol. 16B, pp. 523–606). New York: Alan R Liss.

    Google Scholar 

  • Panigel, M. (1956). Contribution a l’étude de l’ovoviviparité chez les reptiles: Gestation et parturition chez le lézard vivipare Zootoca vivipara. Annales des Sciences Naturelles, Zoologique, 18, 569–668.

    CAS  Google Scholar 

  • Qualls, C. P., & Andrews, R. M. (1999). Maternal body volume constrains water uptake by lizard eggs in utero. Functional Ecology, 13, 845–851.

    Article  Google Scholar 

  • Robson, M. A., & Miles, D. B. (2000). Locomotor performance and dominance in male tree lizards, Urosaurus ornatus. Functional Ecology, 14, 38–344.

    Article  Google Scholar 

  • Rock, J., Andrews, R., & Cree, A. (2000). Effects of reproductive condition, season, and site on selected temperatures of a viviparous gecko. Physiological and Biochemical Zoology, 73, 344–355.

    Article  PubMed  CAS  Google Scholar 

  • Rock, J., & Cree, A. (2003). Intraspecific variation in the effect of temperature on pregnancy in the viviparous gecko Hoplodactylus maculatus. Herpetologica, 59, 8–22.

    Article  Google Scholar 

  • Rodríguez-Díaz, T., & Braña, F. (2011). Plasticity and limitations of extended egg retention in oviparous Zootoca vivipara (Reptilia: Lacertidae). Biological Journal of the Linnean Society, 102, 75–82.

    Article  Google Scholar 

  • Rodríguez-Díaz, T., González, F., Ji, X., & Braña, F. (2010). Effects of incubation temperature on hatchling phenotypes in an oviparous lizard with prolonged egg retention: Are the two main hypotheses on the evolution of viviparity compatible? Zoology, 113, 33–38.

    Article  PubMed  Google Scholar 

  • Shine, R. (1983). Reptilian reproductive modes: The oviparity-viviparity continuum. Herpetologica, 39, 1–8.

    Google Scholar 

  • Shine, R. (1995). A new hypothesis for the evolution of viviparity in reptiles. The American Naturalist, 145, 809–823.

    Article  Google Scholar 

  • Shine, R. (2006). Is increased maternal basking an adaptation or a pre-adaptation to viviparity in lizards? Journal of Experimental Zoology, 305A, 524–535.

    Article  Google Scholar 

  • Shine, R., & Downes, S. J. (1999). Can pregnant lizards adjust their offspring phenotypes to environmental conditions? Oecologia, 119, 1–8.

    Article  Google Scholar 

  • Shine, R., & Harlow, P. (1993). Maternal thermoregulation influences offspring viability in a viviparous lizard. Oecologia, 96, 122–127.

    Article  Google Scholar 

  • Shine, R., & Harlow, P. (1996). Maternal manipulation of offspring phenotypes via nest-site selection in an oviparous lizard. Ecology, 77, 1808–1817.

    Article  Google Scholar 

  • Sorci, G., & Clobert, J. (1997). Environmental effects on locomotor performance in the common lizard (Lacerta vivipara). Evolutionary Ecology, 11, 531–541.

    Article  Google Scholar 

  • Swain, R., & Jones, S. M. (2000). Maternal effects associated with gestation conditions in a viviparous lizard, Niveoscincus metallicus. Herpetological Monographs, 14, 432–440.

    Article  Google Scholar 

  • Van Damme, R., Bauwens, D., & Verheyen, R. F. (1991). The thermal dependence of feeding behaviour, food consumption and gut-passage time in the lizard Lacerta vivipara Jacquin. Functional Ecology, 5, 507–517.

    Article  Google Scholar 

  • Verwaijen, R., Van Damme, R., & Herrel, A. (2002). Relationships between head size, bite force, prey handling efficiency and diet in two sympatric lacertid lizards. Functional Ecology, 16, 842–850.

    Article  Google Scholar 

  • Wapstra, E. (2000). Maternal basking opportunity affects juvenile phenotype in a viviparous lizard. Functional Ecology, 14, 345–352.

    Article  Google Scholar 

  • Webb, J. K., Shine, R., & Christian, K. A. (2006). The adaptive significance of reptilian viviparity in the tropics: testing the maternal manipulation hypothesis. Evolution, 60, 115–122.

    PubMed  Google Scholar 

Download references

Acknowledgments

We would like to thank Félix González for his assistance in collecting lizards, and Ronnie Lendrum for linguistic advice. Funding was provided by the Spanish Ministry of Science (M.E.C.) as a project grant (ref. CGL2007-60187) to Florentino Braña and a fellowship to Tania Rodríguez-Díaz (ref. AP2005-4296) co-financed by the European Social Fund. The lizards used in this study were collected under licence from the environmental authorities of the Junta de Castilla y León and were released back into the wild at their places of capture after the experiments were completed.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tania Rodríguez-Díaz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rodríguez-Díaz, T., Braña, F. Shift in Thermal Preferences of Female Oviparous Common Lizards During Egg Retention: Insights into the Evolution of Reptilian Viviparity. Evol Biol 38, 352–359 (2011). https://doi.org/10.1007/s11692-011-9122-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11692-011-9122-y

Keywords

Navigation