Skip to main content
Log in

The Role of Sex-specific Plasticity in Shaping Sexual Dimorphism in a Long-lived Vertebrate, the Snapping Turtle Chelydra serpentina

  • Research Article
  • Published:
Evolutionary Biology Aims and scope Submit manuscript

Abstract

Sex-specific plasticity, the differential response that the genome of males and females may have to different environments, is a mechanism that can affect the degree of sexual dimorphism. Two adaptive hypotheses have been proposed to explain how sex-specific plasticity affects the evolution of sexual size dimorphism. The adaptive canalization hypothesis states that the larger sex exhibits lesser plasticity compared to the smaller sex due to strong directional selection for a large body size, which penalizes individuals attaining sub-optimal body sizes. The condition-dependence hypothesis states that the larger sex exhibits greater plasticity than the smaller sex due to strong directional selection for a large body size favoring a greater sensitivity as an opportunistic mechanism for growth enhancement under favorable conditions. While the relationship between sex-specific plasticity and sexual dimorphism has been studied mainly in invertebrates, its role in long-lived vertebrates has received little attention. In this study we tested the predictions derived from these two hypotheses by comparing the plastic responses of body size and shape of males and females of the snapping turtle (Chelydra serpentina) raised under common garden conditions. Body size was plastic, sexually dimorphic, and the plasticity was also sex-specific, with males exhibiting greater body size plasticity relative to females. Because snapping turtle males are larger than females, sexual size dimorphism in this species appears to be driven by an increased plasticity of the larger sex over the smaller sex as predicted by the condition-dependent hypothesis. However, male body size was enhanced under relatively limited resources, in contrast to expectations from this model. Body shape was also plastic and sexually dimorphic, however no sex by environment interaction was found in this case. Instead, plasticity of sexual shape dimorphism seems to evolve in parallel for males and females as both sexes responded similarly to different environments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Abouheif, E., & Fairbairn, D. J. (1997). A comparative analysis of allometry for sexual size dimorphism: Assessing Rensch’s rule. American Naturalist, 149(3), 540–562.

    Article  Google Scholar 

  • Ackerman, R. A., Rimkus, T. A., & Lott, D. B. (2008). Water relations of snapping turtle eggs. In A. C. Steyermark MSF & R. J. Brooks (Eds.), Biology of the snapping turtle (Chelydra serpentina) (pp. 135–145). Baltimore: The Johns Hopkins University Press.

    Google Scholar 

  • Adams, D. C., Cardini, A., Monteiro, L. R., O’Higgins, P., & Rohlf, F. J. (2011). Morphometrics and phylogenetics: Principal components of shape from cranial modules are neither appropriate nor effective cladistic characters. Journal of Human Evolution, 60, 240–243.

    Article  PubMed  CAS  Google Scholar 

  • Andersson, M. (1994). Sexual selection. Princeton: Princeton University Press.

    Google Scholar 

  • Anderson, M. J. (2001). A new method for non-parametric multivariate analysis of variance. Austral Ecology, 26, 32–46.

    Google Scholar 

  • Arendt, J. D. (2006). The cellular basis for phenotypic plasticity of body size in Western Spadefoot toad (Spea hammondi) tadpoles: Patterns of cell growth and recruitment in response to food and temperature manipulations. Biological Journal of the Linnean Society, 88, 499–510.

    Article  Google Scholar 

  • Arendt, J., & Hoang, L. (2005). Effect of food level and rearing temperature on burst speed and muscle composition of Western Spadefoot Toad (Spea hammondii). Functional Ecology, 19(6), 982–987.

    Article  Google Scholar 

  • Badyaev, A. V. (2002). Growing apart: an ontogenetic perspective on the evolution of sexual size dimorphism. Trends in Ecology and Evolution, 17, 369–378.

    Article  Google Scholar 

  • Berry, J. F., & Shine, R. (1980). Sexual size dimorphism and sexual selection in turtles (Order Testudines). Oecologia, 44(2), 185–191.

    Article  Google Scholar 

  • Bobyn, M. L., & Brooks, R. J. (1994). Interclutch and interpopulation variation in the effects of incubation conditions on sex, survival and growth of hatchling turtles (Chelydra serpentina). Journal of Zoology, 233, 233–257.

    Google Scholar 

  • Bonduriansky, R. (2007). The evolution of condition-dependent sexual dimorphism. American Naturalist, 169(1), 9–19.

    Article  PubMed  Google Scholar 

  • Bonnet, X., Lagarde, F., Henen, B. T., Corbin, J., Nagy, K. A., Naulleau, G., et al. (2001). Sexual dimorphism in steppe tortoises (Testudo horsfieldii): Influence of the environment and sexual selection on body shape and mobility. Biological Journal of the Linnean Society, 72(3), 357–372.

    Article  Google Scholar 

  • Bookstein, F. L. (1991). Morphometric tools for landmark data. Cambridge: Cambridge Press.

    Google Scholar 

  • Brown, G. P., & Brooks, R. J. (1993). Sexual and seasonal differences in activity in a northern population of snapping turtles, Chelydra serpentina. Herpetologica, 49(3), 311–318.

    Google Scholar 

  • Christiansen, J. L., & Burken, R. R. (1979). Growth and maturity of the snapping turtle (Chelydra serpentina) in Iowa. Herpetologica, 35(3), 261–266.

    Google Scholar 

  • Collyer, M. L., & Adams, D. C. (2007). Analysis of two-state multivariate phenotypic change in ecological studies. Ecology, 88(3), 683–692.

    Article  PubMed  Google Scholar 

  • Congdon, J. D. (1989). Proximate and evolutionary constraints on energy relations of reptiles. Physiological Zoology, 62(2), 356–373.

    Google Scholar 

  • Congdon, J. D., Greene, J. L., & Brooks, R. J. (2008). Reproductive and nesting ecology of female snapping turtles. In A. C. Steyermark & R. J. Brooks (Eds.), Biology of the snapping turtle (Chelydra serpentina) (pp. 123–134). Baltimore: Johns Hopkins University Press.

    Google Scholar 

  • Congdon, J. D., Nagle, R. D., Dunham, A. E., Beck, C. W., Kinney, O. M., & Yeomans, S. R. (1999). The relationship of body size to survivorship of hatchling snapping turtles (Chelydra serpentina): An evaluation of the “bigger is better” hypothesis. Oecologia, 121(2), 224–235.

    Article  Google Scholar 

  • Cox, R. M., & Calsbeek, R. (2010). Sex-specific selection and intraspecific variation in sexual size dimorphism. Evolution, 64(3), 798–809.

    Article  PubMed  Google Scholar 

  • Cox, R. M., & John-Alder, H. B. (2005). Testosterone has opposite effects on male growth in lizards (Sceloporus spp.) with opposite patterns of sexual size dimorphism. Journal of Experimental Biology, 208(24), 4679–4687.

    Article  PubMed  CAS  Google Scholar 

  • Cox, R. M., & John-Alder, H. B. (2007). Growing apart together: The development of contrasting sexual size dimorphisms in sympatric Sceloporus lizards. Herpetologica, 63(3), 245–257.

    Article  Google Scholar 

  • Cox, R. M., Stenquist, D. S., & Calsbeek, R. (2009). Testosterone, growth and the evolution of sexual size dimorphism. Journal of Evolutionary Biology, 22(8), 1586–1598.

    Article  PubMed  CAS  Google Scholar 

  • Cox, R. M., Zilberman, V., & John-Alder, H. B. (2006). Environmental sensitivity of sexual size dimorphism: Laboratory common garden removes effects of sex and castration on lizard growth. Functional Ecology, 20(5), 880–888.

    Article  Google Scholar 

  • Davidowitz, G., D’Amico, L. J., & Nijhout, H. F. (2004). The effects of environmental variation on a mechanism that controls insect body size. Evolutionary Ecology Research, 6(1), 49–62.

    Google Scholar 

  • Dimond, M. T. (1983). Sex of turtle hatchlings as related to incubation temperature (pp. 88–101). Thurmont, MD.

  • Ernst, C. H., Lovich, J. E., & Barbour, R. W. (1994). Turtles of the United States and Canada. Washington and London: Smithsonian Inst. Press.

  • Fairbairn, D. J. (2005). Allometry for sexual size dimorphism: Testing two hypotheses for Rensch’s rule in the water strider Aquarius remigis. American Naturalist, 166(4), S69–S84.

    Article  PubMed  Google Scholar 

  • Fairbairn, D. J., Blanckenhorn, W. U., & Szekely, T. (Eds.). (2007). Sex, size and gender roles. Evolutionary studies of sexual size dimorphism. New York: Oxford University Press.

    Google Scholar 

  • Fairbairn, D. J., & Preziosi, R. F. (1994). Sexual selection and the evolution of allometry for sexual size dimorphism in the water strider, aquarius remigis. American Naturalist, 144(1), 101–118.

    Article  Google Scholar 

  • Fernández-Montraveta, C., & Moya-Laraño, J. (2007). Sex-specific plasticity of growth and maturation size in a spider: Implications for sexual size dimorphism. Journal of Evolutionary Biology, 20(5), 1689–1699.

    Article  PubMed  Google Scholar 

  • Galbraith, D. A., & Brooks, R. J. (1984). A tagging method for use in hatchling turtles. Herpetological Review, 15(3), 73–75.

    Google Scholar 

  • Gibbons, J. W., & Lovich, J. E. (1990). Sexual dimorphism in turtles with emphasis on the slider turtle (Trachemys scripta). Herpetological Monographs, 4, 1–29.

    Article  Google Scholar 

  • Gutzke, W. H. N., & Bull, J. J. (1986). Steroid-hormones reverse sex in turtles. General and Comparative Endocrinology, 64(3), 368–372.

    Article  PubMed  CAS  Google Scholar 

  • Hendry, A. P., Kelly, M. L., Kinnison, M. T., & Reznick, D. N. (2006). Parallel evolution of the sexes? Effects of predation and habitat features on the size and shape of wild guppies. Journal of Evolutionary Biology, 19(3), 741–754.

    Article  PubMed  CAS  Google Scholar 

  • Iverson, J. B. (1985). Geographic variation in sexual dimorphism in the mud turtle Kinosternon hirtipes. Copeia, 2, 388–393.

    Article  Google Scholar 

  • Iverson, J. B., & Moler, P. E. (1997). The female reproductive cycle of the Florida softshell turtle (Apalone ferox). Journal of Herpetology, 31(3), 399–409.

    Article  Google Scholar 

  • Janzen, F. J. (1993). An experimental analysis of natural selection on body size of hatchling turtles. Ecology, 74(2), 332–341.

    Article  Google Scholar 

  • Jenner, R. A., & Wills, M. A. (2007). The choice of model organisms in evo-devo. Nature Reviews Genetics, 8(4), 311–319.

    Article  PubMed  CAS  Google Scholar 

  • John-Alder, H., & Cox, R. M. (2007). Development of sexual size dimorphism in lizards: Testosterone as a bipotential growth regulator. In: D. J. Fairbairn, W. U. Blackenhorn, & T. Székely (Eds.), Sex, size and gender roles: Evolutionary studies of sexual size dimorphism (pp. 195–204). Oxford: Oxford University Press.

  • John-Alder, H. B., Cox, R. M., & Taylor, E. N. (2007). Proximate developmental mediators of sexual dimorphism in size: Case studies from squamate reptiles. Integrative and Comparative Biology, 47(2), 258–271.

    Article  Google Scholar 

  • Kelly, C. D., Bussiere, L. F., & Gwynne, D. T. (2008). Sexual selection for male mobility in a giant insect with female-biased size dimorphism. American Naturalist, 172(3), 417–423.

    Article  PubMed  Google Scholar 

  • Klingenberg, C. P., & Gidaszewski, N. A. (2010). Testing and quantifying phylogenetic signals and homoplasy in morphometric data. Systematic Biology, 59(3), 245–261.

    Article  PubMed  CAS  Google Scholar 

  • Kuchling, G. (2006). Endoscopic sex determination in juvenile freshwater turtles, Erymnochelys madagascariensis: Morphology of gonads and accessory ducts. Chelonian Conservation and Biology, 5(1), 67–73.

    Article  Google Scholar 

  • Lance, V. A., Valenzuela, N., & Von Hildebrand, P. (1992). A hormonal method to determine the sex of hatchling giant river turtles, Podocnemis expansa: Application to endangered species research. American Zoologist, 32(5), 16A.

    Google Scholar 

  • Ligon, D. B., & Lovern, M. B. (2009). Temperature effects during early life stages of the alligator snapping turtle (Macrochelys temminckii). Chelonian Conservation and Biology, 8(1), 74–83.

    Article  Google Scholar 

  • Lott, D. B. (1998). Egg water exchange and temperature dependent sex determination in the common snapping turtle Chelydra serpentina. PhD dissertation, Iowa State University.

  • Lovich, J. E., Znari, M., Baamrane, M. A. A., Naimi, M., & Mostalih, A. (2010). Biphasic geographic variation in sexual size dimorphism of turtle (Mauremys leprosa) populations along an environmental gradient in Morocco. Chelonian Conservation and Biology, 9(1), 45–53.

    Article  Google Scholar 

  • Madsen, T., & Shine, R. (1993). Phenotypic plasticity in body size and sexual size dimorphism in European grass snakes. Evolution, 47, 321–325.

    Article  Google Scholar 

  • Mann, G. K. H., O’Riain, M. J., & Hofmeyr, M. D. (2006). Shaping up to fight: sexual selection influences body shape and size in the fighting tortoise (Chersina angulata). Journal of Zoology, 269(3), 373–379.

    Article  Google Scholar 

  • Montgomery, D. C. (1997). Design and analysis of experiments. New York: Wiley.

  • Mosimann, J. E., & Bider, J. R. (1960). Variation, sexual dimorphism, and maturity in a Quebec population of the common snapping turtle, Chelydra serpentina. Canadian Journal of Zoology, 38(1), 19–38.

    Article  Google Scholar 

  • Myers, E. M., Tucker, J. K., & Chandler, C. H. (2007). Experimental analysis of body size and shape during critical life-history events of hatchling slider turtles, Trachemys scripta elegans. Functional Ecology, 21(6), 1106–1114.

    Article  Google Scholar 

  • O’Steen, S. (1998). Embryonic temperature influences juvenile temperature choice and growth rate in snapping turtles Chelydra serpentina. Journal of Experimental Biology, 201(3), 439–449.

    Google Scholar 

  • Packard, G. C., Miller, K., Packard, M. J., & Birchard, G. F. (1999). Environmentally induced variation in body sire and condition in hatchling snapping turtles (Chelydra serpentina). Canadian Journal of Zoology-Revue Canadienne De Zoologie, 77(2), 278–289.

    Google Scholar 

  • Packard, G. C., Packard, M. J., Miller, K., & Boardman, T. J. (1987). Influence of moisture, temperature, and substrate on snapping turtle eggs and embryos. Ecology, 68(4), 983–993.

    Article  Google Scholar 

  • Parmenter, R. R., & Avery, H. W. (1990). The feeding ecology of the slider turtle. In: J. W. Gibbons (Ed.), Life history and ecology of the slider turtle (pp. 257–266). Washington, DC: Smithsonian Inst. Press.

  • Pinheiro, J. C., & Bates, D. M. (2000). Mixed-effects models in S and S-PLUS. Statistics and computing series. New York, NY: Springer.

    Book  Google Scholar 

  • Quezada-Euan, J. J. G., Lopez-Velasco, A., Perez-Balam, J., Moo-Valle, H., Velazquez-Madrazo, A., & Paxton, R. J. (2011). Body size differs in workers produced across time and is associated with variation in the quantity and composition of larval food in Nannotrigona perilampoides (Hymenoptera, Meliponini). Insectes Sociaux, 58(1), 31–38.

    Article  Google Scholar 

  • Rhen, T., & Lang, J. W. (1994). Temperature-dependent sex determination in the snapping turtle – manipulation of the embryonic sex steroid environment. General and Comparative Endocrinology, 96, 243–254.

    Article  PubMed  CAS  Google Scholar 

  • Rhen, T., & Lang, J. W. (1995). Phenotypic plasticity for growth in the common snapping turtle—effects of incubation, temperature, clutch and their interaction. American Naturalist, 146(5), 726–747.

    Article  Google Scholar 

  • Rhen, T., Elf, P. K., Fivizzani, A. J., & Lang, J. W. (1996). Sex-reversed and normal turtles display similar sex steroid profiles. Journal of Experimental Zoology, 274, 221–226.

    Article  CAS  Google Scholar 

  • Rivera, G. (2008). Ecomorphological variation in shell shape of the freshwater turtle Pseudemys concinna inhabiting different aquatic flow regimes. Integrative and Comparative Biology, 48(6), 769–787.

    Google Scholar 

  • Rohlf, F. J. (2001). TPSDIG, version 1.31. Stony Brook, NY, USA: Department of Ecology and Evolution. State University of New York at Stony Brook.

    Google Scholar 

  • Rohlf, F. J. (2003). TPSRELW, Version 1.29. NY, USA: Department of Ecology and Evolution, State University of New York at Stony Brook.

    Google Scholar 

  • Rohlf, F. J., & Slice, D. (1990). Extensions of the Procrustes method for the optimal superimposition of landmarks. Systematic Zoology, 39(1), 40–59.

    Article  Google Scholar 

  • Schlichting, C. D., & Pigliucci, M. (1998). Phenotypic evolution: A reaction norm perspective. Sunderland, MA: Sinauer Associates, Inc.

  • Schoener, T. W. (1967). Ecological significance of sexual dimorphism in size in lizard Anolis cospersus. Science, 155(3761), 474.

    Article  PubMed  CAS  Google Scholar 

  • Slack, J. M. W. (2006). Model organisms (Chapter 6). Essential developmental biology (2nd ed.).

  • Sokal, R., & Rohlf, J. (2001). Biometry: The principles and practice of statistics in biological research. New York: W. H. Freeman and Company.

  • Spotila, J. R., & Bell, B. A. (2008). Thermal ecology and feeding of the snapping turtle, Chelydra serpentina. In A. C. Steyermark (Ed.), Biology of the snapping turtle (Chelydra serpentina) (pp. 71–79). Baltimore, MD: The Johns Hopkins University Press.

    Google Scholar 

  • Starostova, Z., Kubicka, L., & Kratochvil, L. (2010). Macroevolutionary pattern of sexual size dimorphism in geckos corresponds to intraspecific temperature-induced variation. Journal of Evolutionary Biology, 23(4), 670–677.

    Article  PubMed  CAS  Google Scholar 

  • Steyermark, A. C. (2008). Growth patterns of snapping turtles, Chelydra serpentina. In A. C. Steyermark, M. S. Finkler, & R. J. Brooks (Eds.), Biology of the snapping turtle (Chelydra serpentina) (pp. 111–119). Baltimore: The Johns Hopkins University Press.

    Google Scholar 

  • Steyermark, A. C., Gibbons, J. W., Finkler, M. S., & Brooks, R. J. (Eds.). (2008). Biology of the snapping turtle (Chelydra Serpentina). Baltimore: Johns Hopkins University Press.

  • Stillwell, R. C., Blanckenhorn, W. U., Teder, T., Davidowitz, G., & Fox, C. W. (2010). Sex differences in phenotypic plasticity affect variation in sexual size dimorphism in insects: From physiology to evolution. Annual Review of Entomology, 55(1), 227–245.

    Article  PubMed  CAS  Google Scholar 

  • Stillwell, R. C., & Fox, C. W. (2007). Environmental effects on sexual size dimorphism of a seed-feeding beetle. Oecologia, 153(2), 273–280.

    Article  PubMed  Google Scholar 

  • Stillwell, R. C., Wallin, W. G., Hitchcock, L. J., & Fox, C. W. (2007). Phenotypic plasticity in a complex world: Interactive effects of food and temperature on fitness components of a seed beetle. Oecologia, 153(2), 309–321.

    Article  PubMed  Google Scholar 

  • Taylor, E. N., & Denardo, D. F. (2005). Sexual size dimorphism and growth plasticity in snakes: An experiment on the Western Diamond-backed Rattlesnake (Crotalus atrox). Journal of Experimental Zoology Part a-Comparative Experimental Biology, 303A(7), 598–607.

    Article  Google Scholar 

  • Teder, T., & Tammaru, T. (2005). Sexual size dimorphism within species increases with body size in insects. Oikos, 108(2), 321–334.

    Article  Google Scholar 

  • Valenzuela, N. (2001a). Constant, shift, and natural temperature effects on sex determination in Podocnemis expansa. Ecology, 82(11), 3010–3024.

    Google Scholar 

  • Valenzuela, N. (2001b). Maternal effects on life-history traits in the Amazonian giant river turtle Podocnemis expansa. Journal of Herpetology, 35(3), 368–378.

    Article  Google Scholar 

  • Valenzuela, N., Adams, D. C., Bowden, R. M., & Gauger, A. C. (2004). Geometric morphometric sex estimation for hatchling turtles: A powerful alternative for detecting subtle sexual shape dimorphism. Copeia (4), 735–742.

  • Warton, D. I., & Weber, N. C. (2002). Connnon slope tests for bivariate errors-in-variables models. Biometrical Journal, 44(2), 161–174.

    Article  Google Scholar 

  • White, J. B., & Murphy, G. G. (1973). The reproductive cycle and sexual dimorphism of the common snapping turtle Chelydra serpentina serpentina. Herpetologica, 29(3), 240–246.

    Google Scholar 

  • Wolak, M. E., Gilchrist, G. W., Ruzicka, V. A., Nally, D. M., Chambers, R. M. (in press). A contemporary, sex-limited change in body size of an estuarine turtle in response to commercial fishing. Conservation Biology.

  • Yntema, C. L. (1976). Effects of incubation temperatures on sexual differentiation in turtle, Chelydra serpentina. Journal of Morphology, 150(2), 453–461.

    Article  Google Scholar 

  • Zelditch, M. L., Swiderski, D. L., Sheets, H. D., & Fink, W. L. (2004). Geometric morphometrics for biologists: A primer. New York: Elsevier Academic Press.

    Google Scholar 

  • Zhu, X. P., Wei, C. Q., Zhao, W. H., Du, H. J., Chen, Y. L., & Gui, J. F. (2006). Effects of incubation temperatures on embryonic development in the Asian yellow pond turtle. Aquaculture, 259(1–4), 243–248.

    Article  Google Scholar 

Download references

Acknowledgments

We thank J. Millard for donating the eggs for this study, R. Clayton for assistance with housing and maintenance of the animals, C. Vleck for assistance with RIA assays, D. Adams for advice on data analyses, and several undergraduate students for daily maintenance of the animals and help with data collection. Funding was provided from grants: P.E.O. International Peace Scholarship to CC, NSF Doctoral Dissertation Improvement Grant DEB-0808047 to NV and CC, NSF IOS 0743284 and associated REU and RET supplements to NV, and several assistantships to CC from Iowa State University. This research was approved by the Institutional Animal Care and Use Committee of Iowa State University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicole Valenzuela.

Appendix

Appendix

See Table 6.

Table 6 Ingredients and nutritional composition of the two types of turtle food (Zoo Med Lab) with relatively higher and lower quality used in this study (source: http://www.zoomed.com downloaded on September 15, 2010)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ceballos, C.P., Valenzuela, N. The Role of Sex-specific Plasticity in Shaping Sexual Dimorphism in a Long-lived Vertebrate, the Snapping Turtle Chelydra serpentina . Evol Biol 38, 163–181 (2011). https://doi.org/10.1007/s11692-011-9117-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11692-011-9117-8

Keywords

Navigation