Skip to main content
Log in

Modelling the Transport of Nutrients in Early Animals

  • Essay
  • Published:
Evolutionary Biology Aims and scope Submit manuscript

Abstract

The single-celled ancestors of multi-cellular animals (metazoans) did not need to transport nutrients between cells, but this ability is vital for modern animals. How could intercellular nutrient transport have begun? And how did this influence the early evolution of animals? In this hypothesis, I suggest that nutrients could have passed directly between the cytoplasm of conjoined cells in early compacted cell-balls, along the plane of the closed epithelium. This would have limited early animals to the size and form of modern embryos. The mechanisms that indirectly transport nutrients between discrete cells, via the extracellular fluid within the body-space, are modelled to have evolved sequentially; so comparison of nutrient transport processes could provide evidence of any early divergences of phyla. When the last of the indirect intercellular transport processes for essential nutrients had been developed, the extracellular fluid within the body-space would have contained all necessary nutrients. Then the epithelium could have greatly expanded, and cells lived and divided within the body-space. This development of nutrient transport processes would have enabled animals to greatly increase in size and complexity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Aris-Brosou, S., & Yang, Z. (2003). Bayesian models of episodic evolution support a late Precambrian explosive diversification of the Metazoa. Molecular Biology and Evolution, 20, 1947–1954. doi:10.1093/molbev/msg226.

    Article  PubMed  CAS  Google Scholar 

  • Bengtson, S., & Budd, G. (2004). Comment on small bilaterian fossils from 40 to 55 million years before the Cambrian. Science, 306, 1291. doi:10.1126/science.1101338.

    Article  PubMed  CAS  Google Scholar 

  • Blair, J. E., & Hedges, S. B. (2005). Molecular clocks do not support the Cambrian explosion. Molecular Biology and Evolution, 22, 387–390. doi:10.1093/molbev/msi039.

    Article  PubMed  CAS  Google Scholar 

  • Cereijido, M., Contreras, R. G., & Shoshani, L. (2004). Cell adhesion, polarity and epithelia in the dawn of metazoans. Physiological Reviews, 84, 1229–1262. doi:10.1152/physrev.00001.2004.

    Article  PubMed  CAS  Google Scholar 

  • Chen, J. Y., Bottjer, D. J., Oliveri, P., Dornbos, S. Q., Gao, F., Ruffins, S., et al. (2004a). Small bilaterian fossils from 40 to 55 million years before the Cambrian. Science, 305, 218–222. doi:10.1126/science.1099213.

  • Chen, J. Y., Oliveri, P., Davidson, E. H., & Bottjer, D. J. (2004b). Response to comment on small bilaterian fossils from 40 to 55 million years before the Cambrian. Science, 306, 1291. doi:10.1126/science.1102328.

  • Chen, J. Y., Oliveri, P., Li, C. W., Zhou, G. Q., Gao, F., Hagadorn, J. W., et al. (2000). Precambrian animal diversity: putative phosphatized embryos from the Doushantuo Formation of China. Proceedings of the National Academy of Sciences of the United States of America, 97, 4457–4462. doi:10.1073/pnas.97.9.4457.

    Article  PubMed  CAS  Google Scholar 

  • Crick, F. H. (1970). Diffusion in embryogenesis. Nature, 225, 420–422. doi:10.1038/225420a0.

    Article  PubMed  CAS  Google Scholar 

  • Dai, G., Levy, O., & Carrasco, N. (1996). Cloning and characterization of the thyroid iodide transporter. Nature, 379, 458–460. doi:10.1038/379458a0.

    Article  PubMed  CAS  Google Scholar 

  • Dunn, C. W., Hejnol, A., Matus, D. Q., Pang, K., Browne, W. E., Smith, S. A., et al. (2008). Broad phylogenomic sampling improves resolution of the animal tree of life. Nature, 452, 745–749. doi:10.1038/nature06614.

    Article  PubMed  CAS  Google Scholar 

  • Eernisse, D. J., & Peterson, K. J. (2004). The history of animals. In J. Cracraft & M. J. Donoghue (Eds.), Assembling the tree of life (pp. 197–208). Oxford: Oxford University Press.

  • Gerhardt, J., & Kirschner, M. (1997). Cells, embryos, and evolution. Malden, MA: Blackwell Science, Inc.

    Google Scholar 

  • Glaessner, M. F., & Wade, M. (1966). The late Precambrian fossils from Ediacara, South Australia. Palaeontology, 9, 599–628.

    Google Scholar 

  • Gould, S. J. (1989). Wonderful life: The Burgess Shale and the nature of history. New York: WW Norton & co.

    Google Scholar 

  • Haeckel, E. (1874). The gastrea theory, the phylogenetic classification of the animal kingdom and the homology of the germ-lamellae. The Quarterly Journal of Microscopical Science, 14, 142–165.

    Google Scholar 

  • Halanych, K. M. (2004). The new view of animal phylogeny. Annual Review of Ecology and Systematics, 35, 229–256. doi:10.1146/annurev.ecolsys.35.112202.130124.

  • Larroux, C., Fahey, B., Liubicich, D., Hinman, V. F., Gauthier, M., Gongora, M., et al. (2006). Developmental expression of transcription factor genes in a demosponge: insights into the origin of metazoan multicellularity. Evolution & Development, 8, 150–173. doi:10.1111/j.1525-142X.2006.00086.x.

    Article  CAS  Google Scholar 

  • Manolescu, A. R., Witkowska, K., Kinnaird, A., Cessford, T., & Cheeseman, C. (2007). Facilitated hexose transporters: new perspectives on form and function. Physiology (Bethesda, MD), 22, 234–240. doi:10.1152/physiol.00011.2007.

    Article  CAS  Google Scholar 

  • Peterson, K. J., Lyons, J. B., Nowak, K. S., Takacs, C. M., Wargo, M. J., & McPeek, M. A. (2004). Estimating metazoan divergence times with a molecular clock. Proceedings of the National Academy of Sciences of the United States of America, 101, 6536–6541. doi:10.1073/pnas.0401670101.

    Article  PubMed  CAS  Google Scholar 

  • Pisani, D., Poling, L. L., Lyons-Weiler, M., & Hedges, S. B. (2004). The colonization of land by animals: molecular phylogeny and divergence times among arthropods. BMC Biology, 2, 1–10. doi:10.1186/1741-7007-2-1.

    Article  PubMed  Google Scholar 

  • Prasad, P. D., Wang, H., Kekuda, R., Fujita, T., Fei, Y. J., Devoe, L. D., et al. (1996). Cloning and functional expression of a cDNA encoding a mammalian sodium-dependent vitamin transporter mediating the uptake of Pantothenate, Biotin, and Lipoate. The Journal of Biological Chemistry, 273, 7501–7506. doi:10.1074/jbc.273.13.7501.

    Article  Google Scholar 

  • Scheepers, A., Joost, H. G., & Schürmann, A. (2004). The glucose transporter families SGLT and GLUT: molecular basis of normal and aberrant function. Journal of Parenteral and Enteral Nutrition, 28, 364–371.

    Article  PubMed  CAS  Google Scholar 

  • Seilacher, A. (1984). Late Precambrian and early Cambrian Metazoa: Preservational or real extinctions? In H. D. Holland & A. F. Trendall (Eds.), Patterns of change in earth evolution (pp. 159–168). Berlin: Springer Verlag.

    Google Scholar 

  • Turing, A. M. (1952). The chemical basis of morphogenesis. Philosophical Transactions of the Royal Society of London. B, 237, 37–72. doi:10.1098/rstb.1952.0012.

    Article  Google Scholar 

  • Wray, G. A., Levinton, J. S., & Shapiro, L. H. (1996). Molecular evidence for deep Precambrian divergences among metazoan phyla. Science, 274, 568–573. doi:10.1126/science.274.5287.568.

    Article  CAS  Google Scholar 

  • Wolpert, L. (1969). Positional information & the spatial pattern of cellular differentiation. Journal of Theoretical Biology, 25, 1–47.

    Article  PubMed  CAS  Google Scholar 

  • Xian-Guang, H., Aldridge, R. J, Bergstrom, J, Siveter, D. J, Siveter, D. & Xian-Hong, F. (2004). The Cambrian fossils of Chengjiang, China. Malden, USA: Blackwell.

  • Xiao, S., Zhang, Y., & Knoll, A. H. (1998). Three-dimensional preservation of algae and animal embryos in a Neoproterozoic phosphorite. Nature, 391, 553–558. doi:10.1038/35318.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

I thank C Beaumont, OA Crimmen, AR Milner and IK Petrie for helpful discussions, and RA Beaumont, KME Chu, B Hallgrimsson, IK Petrie, MG Waugh and AS Wilkins for help with the preparation of the manuscript. I also thank the Medical Illustration Unit, Royal Free & University College Medical School (Royal Free Campus) for creating the figures.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. J. Beaumont.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Beaumont, N.J. Modelling the Transport of Nutrients in Early Animals. Evol Biol 36, 256–266 (2009). https://doi.org/10.1007/s11692-008-9047-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11692-008-9047-2

Keywords

Navigation