Skip to main content

Advertisement

Log in

The Macroevolution of our Ancient Lineage: What We Know (or Think We Know) about Early Hominin Diversity

  • Synthesis Article
  • Published:
Evolutionary Biology Aims and scope Submit manuscript

Abstract

Quantitative, evolutionary models that incorporate within- and between-species variation are critical for interpreting the fossil record of human diversity, and for making taxonomic distinctions. However, small sample sizes, sexual dimorphism, temporal trends, geographic variation, and the limited number of relevant extant models have always made the consideration of variation difficult for paleoanthropologists. Here we provide a brief overview of current early hominin diversity. We then argue that for many species our limited understanding of within species variation hampers our ability to make taxonomic decisions with any level of statistical certainty. Perhaps more significantly, the underlying causes of between-species variation among early hominins are poorly studied. There have been few attempts to correlate aspects of the phenotype with meaningful evidence for niche differentiation, to demonstrate the selective advantage of traits, or to provide other evidence for macroevolutionary divergence. Moreover, current depictions of vast pattern (but not size) diversity are inconsistent with expectations derived from most other extant primate clades that have adaptively radiated. If indeed the early hominin record is highly speciose, the reasons for this remain unclear.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Notes

  1. The term ‘hominin’ is used to refer to all members of our lineage following the split from a common ancestor shared with the chimpanzee. ‘Early hominin’ is used here to refer to those members of our lineage that are not members of the genus Homo. We recognize that early members of the genus Homo and other early hominins overlapped temporally for in excess of 1 million years, rendering this terminology flawed, if convenient.

  2. Hominoids are apes and humans, and their ancestors.

  3. Effective sample size is an expression of known trait variability. Early hominin species with very limited trait variability at the time full species rank was proposed include: O. tugenensis (N = 1, except N = 2 for maxillary and mandibular third molars and a proximal femur); S. tchadensis (N = 1, except N = 2 for maxillary third molar); Ar. kadabba (N = 1, except N = 2 for a few dental dimensions); Ar. ramidus (N = 1, except N = 2 for humerus and a few teeth); A. anamensis (N = 1, except N = 2–4 for several posterior teeth); A. bahrelghazali (N = 1); K. platyops (N = 1, except N = 2 for some temporal bone features); A. garhi (N = 1); P. aethiopicus (N = 1). See discussion in Smith (2005).

  4. There is reason for concern that these estimates are too high, as this level of diversity is unexpected for animals of a similar size—for a discussion of this issue in the genus Homo, see Conroy (2002).

  5. Branching events do not, of course, preclude anagenetic change, and in fact there is good evidence for such an ancestor-descendent relationship from A. anamensis to A. afarensis (Kimbel et al., 2006). However, most interpretations of this diversity suggest that cladogenesis is also present (Begun, 2004).

  6. In framing such research, we think it needs to be recognized that the literature on human evolution has tended to accept the possible implications of a very limited set of general processes that describe patterns of speciation (such as competitive exclusion) while essentially ignoring other important generalizations about species diversity (such as niche construction and self-organized similarity) (Laland & Sterelny, 2006; Scheffer & van Nes, 2006).

  7. There is considerable debate surrounding baboon taxonomy, and whether the myriad forms are distinct at the subspecific or specific level. For a view representing the latter, see Grubb et al. (2003).

  8. Given this, the cause of their subsequent demise is no longer clear (Wood & Strait, 2004).

  9. Of course, there are other ways to detect niche differentiation as well. For example, because of the close relationship between absolute body size and diet across all primates (Fleagle, 1999), differences in body size among early hominins may themselves provide a signal of niche differentiation. In fact, size evolution in primates is a likely consequence of adaptation to fill empty dietary niches (Marroig & Cheverud, 2001, 2005). Unfortunately, reliable estimates of body weight are unavailable for the earliest hominin taxa, leaving researchers to compare other aspects of morphology—such as tooth size—as a surrogate for overall size differences. From about 4.2 million years, we have somewhat better size estimates (Jungers, 1988; McHenry, 1992), which indicate that these australopiths are generally comparable in body size. Similarly, correlations between different locomotor adaptations and environments would indicate that these hominins occupied a diverse range of habitats. However, substantial postcranial material is not available for a number of early hominin genera, making comparative studies difficult.

  10. There are, of course, exceptions to this. For example, the primary contributors to facial integration in apes and humans are the zygomatic and oral regions, while studies of both Old and New World monkeys indicate integration in the oral region alone. Nevertheless, the overall pattern of covariation is similar.

  11. Here too, cognitive biases affect our interpretations, as the placing of objects into categories (differentiated by degree, or kind) is not only a method of taxonomy and phylogenetic modeling, but a fundamental process by which all humans organize the world. As summarized by Murphy (2003: 514):

    …people are far too willing to latch onto a possible category for objects and then to rely on it even when it is uncertain…there is a strong drive from early childhood to categorize entities and to assume that such categories reflect deep and important regularities…not only do we rely on categories when they are uncertain, simply asking about a category results in our using categorical information.

  12. Humans are not just apes at a different size, so some reorganization of morphological patterns has occurred at some point. We acknowledge that there are exceptions to the primate rules, however, multiple exceptions within a highly-branched lineage are unlikely.

  13. Another possible explanation for mosaicism that has received little attention is gene flow, an important shaper of diversity when one is dealing with small populations. Although a number of recent studies have suggested that hybridization is more common than previously appreciated in hominin evolution, these studies have overwhelmingly focused on the genus Homo (Brown et al., 2004; Reed, Smith, Hammond, Rogers, & Clayton, 2004; Stefansson et al., 2005; Swisher et al., 1996; Trinkaus, 2005; Zilhao & Trinkaus, 2002). Only one study has been concerned with earlier hominin evolution, and this focused on hybridization between chimpanzee ancestors and early hominins (Patterson, Richter, Gnerre, Lander, & Reich, 2006), rather than between early hominins. What does a tree look like if there is reticulation? This is not clear and needs to be tested, though assumedly hominin populations would diverge more slowly, and hybrid populations would display a wider range of phenotypic variation than you would see in the parental populations (Ackermann, Rogers, & Cheverud, 2006).

References

  • Ackermann, R. R., (2002). Patterns of covariation in the hominoid craniofacial skeleton: Implications for paleoanthropological models. Journal of Human Evolution, 43, 167–187

    PubMed  Google Scholar 

  • Ackermann, R. R., (2003). Morphological integration in hominoids: A tool for understanding human evolution. American Journal of Physical Anthropology Suppl., 32, 35

    Google Scholar 

  • Ackermann, R. R., (2005). Ontogenetic integration of the hominoid face. Journal of Human Evolution, 48, 175–197

    PubMed  Google Scholar 

  • Ackermann, R. R., & Cheverud, J. M., (2000). Phenotypic covariance structure in tamarins (genus: Saguinus): A comparison of variation patterns using matrix correlation and common principal component analysis. American Journal of Physical Anthropology, 111, 489–501

    PubMed  CAS  Google Scholar 

  • Ackermann, R. R., & Cheverud, J. M., (2004a). Detecting genetic drift versus selection in human evolution. Proceedings of National Academy Science USA, 101, 17946–17951

    CAS  Google Scholar 

  • Ackermann, R. R., & Cheverud, J. M., (2004b). Morphological integration in primate evolution. In M. Pigliucci & K. Preston (Eds.), Phenotypic integration: Studying the ecology and evolution of complex phenotypes (pp. 302–319). Oxford: Oxford University Press

    Google Scholar 

  • Ackermann, R. R., Rogers, J., & Cheverud, J. M., (2006). Identifying the morphological signatures of hybridization in primate and human evolution. Journal of Human Evolution, 51, 632–645

    PubMed  Google Scholar 

  • Alemseged, Z., Spoor, F., Kimbel, W. H., Bobe, R., Geraads, D., Reed, D., & Wynn, J. G., (2006). A juvenile early hominin skeleton from Dikika, Ethiopia. Nature, 443, 296–301

    PubMed  CAS  Google Scholar 

  • Andrews, P., (1995). Ecological apes and ancestors. Nature, 376, 555–556

    PubMed  CAS  Google Scholar 

  • Arambourg, C., & Coppens, Y., (1968). Découverte d’un australopithécien nouveau dans le gisements de l’Omo (Éthiopie). South African Journal of Science, 64, 58–59

    Google Scholar 

  • Asfaw, B., White, T., Lovejoy, O., Latimer, B., Simpson, S., & Suwa, G., (1999). Australopithecus garhi: A new species of early hominid from Ethiopia. Science, 284, 629–635

    PubMed  CAS  Google Scholar 

  • Begun, D. R., (2004). The earliest hominins – is less more? Science, 303, 1478–1480

    PubMed  CAS  Google Scholar 

  • Björklund, M., (2003). Variation and selection – what are we measuring? Annales Zoologici Fennici, 40, 387–394

    Google Scholar 

  • Broom, R., (1938). Pleistocene anthropoid apes of South Africa. Nature, 142, 377–379

    Google Scholar 

  • Brown, P., Sutikna, T., Morwood, M. J., Soejono, R. P., Jatmiko, Saptomo, E. W., & Due, R. A., (2004). A new small-bodied hominin from the late Pleistocene of Flores, Indonesia. Nature, 431, 1055–1061

    PubMed  CAS  Google Scholar 

  • Brunet, M., Beuvilain, A., Coppens, Y., Heintz, E., Moutaye, A. H. E., & Pilbeam, D., (1995). The first australopithecine 2500 kilometres west of the Rift Valley (Chad). Nature, 378, 273–275

    PubMed  CAS  Google Scholar 

  • Brunet, M., Guy, F., Pilbeam, D., Lieberman, D. E., Likius, A., Mackaye, H. T., Ponce De León, M. S., Zollikofer, C. P. E., & Vignaud, P., (2005). New material of the earliest hominid from the Upper Miocene of Chad. Nature, 434, 752–755

    PubMed  CAS  Google Scholar 

  • Brunet, M., Guy, F., Pilbeam, D., Mackaye, H. T., Likius, A., Ahounta, D., Beauvilain, A., Blondel, C., Bocherens, H., Boisserie, J., Bonis, L. D., Coppens, Y., Dejax, J., Denys, C., Duringer, P., Eisenmann, V., Fanone, G., Fronty, P., Geraads, D., Lehmann, T., Lihoreau, F., Louchart, A., Mahamat, A., Merceron, G., Mouchelin, G., Otero, O., Campomanes, P. P., Leon, M. P. D., Rage, J., Sapanet, M., Schuster, M., Sudre, J., Tassy, P., Valentin, X., Vignaud, P., Viriot, L., Zazzo, A., & Zollikofer, C., (2002). A new hominid from the Upper Miocene of Chad, Central Africa. Nature, 418, 145–151

    PubMed  CAS  Google Scholar 

  • Carroll, S. B., Grenier, J. K., & Weatherbee, S. D., (2005). From DNA to diversity: Molecular genetics and the evolution of animal design, (2nd ed.). Oxford: Blackwell Publishing

    Google Scholar 

  • Cela-Conde, C. J., & Ayala, F. J., (2003). Genera of the human lineage. Proceedings of National Academy Science USA, 100, 7684–7689

    CAS  Google Scholar 

  • Cheverud, J. M., (1996). Quantitative genetic analysis of cranial morphology in the cotton-top (Saguinus oedipus) and saddle-back (S. fuscicollis) tamarins. Journal of Evolutionary Biology, 9, 5–42

    Google Scholar 

  • Clarke, R. J., (1998). First ever discovery of a well-preserved skull and associated skeleton of Australopithecus. South African Journal of Science, 94, 460–464

    Google Scholar 

  • Clarke, R. J., & Tobias, P. V., (1995). Sterkfontein Member 2 foot bones of the oldest South African hominid. Science, 269, 521–524

    PubMed  CAS  Google Scholar 

  • Coffing, K., Feibel, C., Leakey, M., & Walker, A., (1994). Four-million-year-old hominids from east Lake Turkana, Kenya. American Journal of Physical Anthropology, 93, 55–66

    PubMed  CAS  Google Scholar 

  • Conroy, G. C., (2002). Speciosity in the early Homo lineage: Too many, too few, or just about right? Journal of Human Evolution, 43, 759–766

    PubMed  Google Scholar 

  • Conroy, G. C., Pickford, M., Senut, B., Van Couvering, J., & Mein, P., (1992). Otavipithecus namibiensis, first Miocene hominoid from Southern Africa (Berg Aukas, Namibia). Nature, 356, 144–148

    PubMed  CAS  Google Scholar 

  • Constantino, P., & Wood, B. A., (2004). Paranthropus paleobiology. In Miscelánea en homenaje a Emiliano Aguirre (Vol. III). Paleoantropologia (pp. 136–151). Madrid: Museo Arqueolócico Regional

  • Dart, R. A., (1925). Australopithecus africanus: The man-ape of South Africa. Nature, 115, 195–199

    Google Scholar 

  • De Heinzelin, J., Desmond Clark, J., White, T., Hart, W., Renne, P., Woldegabriel, G., Beyene, Y., & Vrba, E., (1999). Environmental and behaviour of 2.5-million-year-old Bouri Hominids. Science, 284, 625–629

    PubMed  Google Scholar 

  • Frost, S. R., Marcus, L. F., Bookstein, F. L., Reddy, D. P., & Delson, E., (2003). Cranial allometry, phylogeography, and systematics of large-bodied Papionins (Primates: Cercopithecinae) inferred from geometric morphometric analysis of landmark data. The Anatomical Record Part A, 275A, 1048–1072

    Google Scholar 

  • González-José, R., Van Der Molen, S., González-Pérez, S., & Hernández, M., (2004). Patterns of phenotypic covariation and correlation in modern humans as viewed from morphological integration. American Journal of Physical Anthropology, 123, 69–77

    PubMed  Google Scholar 

  • Grine, F. E., (1988). Evolutionary history of the “robust” Australopithecines. Aldine de Gruyter, New York

    Google Scholar 

  • Grine, F. E., Ungar, P. S., & Teaford, M. F., (2006a). Was the Early Pliocene hominin ‘Australopithecus’ anamensis a hard object feeder? South African Journal of Science, 102, 301–310

    Google Scholar 

  • Grine, F. E., Ungar, P. S., Teaford, M. F., & El-Zaatari, S., (2006b). Molar microwear in Praeanthropus afarensis: Evidence for dietary stasis through time and under diverse paleoecological conditions. Journal of Human Evolution, 51, 297–319

    PubMed  Google Scholar 

  • Grubb, P., Butynski, T. M., Oates, J. F., Bearder, S. K., Disotell, T. R., Groves, C. P., & Struhsaker, T. T., (2003). Assessment of the diversity of African primates. International Journal of Primatology, 24, 1301–1357

    Google Scholar 

  • Guy, F., Lieberman, D. E., Pilbeam, D., Ponce De León, M. S., Likius, A., Mackaye, H. T., Vignaud, P., Zollikofer, C. P. E., & Brunet, M., (2005). Morphological affinities of the Sahelanthropus tchadensis (Late Miocene hominid from Chad) cranium. Proceedings of National Academy Science USA, 102, 18836–18841

    CAS  Google Scholar 

  • Haile-Selassie, Y., (2001). Late Miocene hominids from the Middle Awash, Ethiopia. Nature, 412, 178–181

    PubMed  CAS  Google Scholar 

  • Haile-Selassie, Y., Suwa, G., & White, T. D., (2004). Late Miocene teeth from Middle Awash, Ethiopia, and early hominid dental evolution. Science, 303, 1503–1505

    PubMed  CAS  Google Scholar 

  • Harris, J. M., (1987). Summary. In M. D. Leakey & J. M. Harris (Eds.), Laetoli: A pliocene site in northern Tanzania (pp. 524–531). Oxford: Oxford University Press

    Google Scholar 

  • Johanson, D. C., Lovejoy, C. O., Kimbel, W. H., White, T. D., & Ward, S. C., (1982). Morphology of the Pliocene partial hominid skeleton (A. L. 288–1) from the Hadar formation, Ethiopia. American Journal of Physical Anthropology, 112, 469–492

    Google Scholar 

  • Johanson, D. C., White, T. D., & Coppens, Y., (1978). A new species of the genus Australopithecus (Primates: Hominidae) from the pliocene of Eastern Africa (pp. 1–14). Kirtlandia, the Cleveland Museum of Natural History

  • Jolly, C. J., (1970). The large African monkeys as an adaptive array. In J. R. Napier, & P. H. Napier (Eds.), Old world monkeys – evolution, systematics, and behavior (pp. 141–174). New York: Academic Press

    Google Scholar 

  • Jolly, C. J., (2003). Commentary: Cranial anatomy and baboon diversity. The Anatomical Record, 275, 1043–1047

    PubMed  Google Scholar 

  • Jungers, W. L., (1988). New estimates of body size in australopithecines. In F. E. Grine (Ed.), Evolutionary history of the “robust” Australopithecines (pp. 115–125). New York: Aldine de Gruyter

    Google Scholar 

  • Kimbel, W. H., Lockwood, C. A., Ward, C. V., Leakey, M. G., Rak, Y., & Johanson, D. C., (2006). Was Australopithecus anamensis ancestral to A. afarensis? A case of anagenesis in the hominin fossil record. Journal of Human Evolution, 51, 134–152

    PubMed  Google Scholar 

  • Laland, K. N., & Sterelny, K., (2006). Perspective: Seven reasons (not) to neglect niche construction. Evolution, 60, 1751–1762

    PubMed  Google Scholar 

  • Leakey, L. S. B., (1959). A new fossil skull from Olduvai. Nature, 184, 491–493

    Google Scholar 

  • Leakey, M. G., Feibel, C. S., McDougall, I., & Walker, A., (1995). New four-million-year-old hominid species from Kanapoi and Allia Bay, Kenya. Nature, 376, 565–571

    PubMed  CAS  Google Scholar 

  • Leakey, M. G., Feibel, G. S., McDougall, I., Ward, C., & Walker, A., (1998). New specimens and confirmation of an early age for Australopithecus anamensis. Nature, 393, 62–66

    PubMed  CAS  Google Scholar 

  • Leakey, M. G., Spoor, F., Brown, F. H., Gathogo, P. N., Kiarie, C., Leakey, L. N., & McDougall, I., (2001). New hominin genus from eastern Africa shows diverse middle Pliocene lineages. Nature, 410, 433–440

    PubMed  CAS  Google Scholar 

  • Lee-Thorp, J. A., & Sponheimer, M., (2006). Contributions of biogeochemistry to understanding hominin dietary ecology. Yearbook of Physical Anthropology, 49, 131–148

    Google Scholar 

  • LeGros Clark, W. E., (1955). The fossil evidence for human evolution. The University of Chicago Press, Chicago

    Google Scholar 

  • LeGros Clark, W. E., (1978). The fossil evidence for human evolution. Chicago: The University of Chicago Press

    Google Scholar 

  • Lieberman, D. E., (2001). Another face on our family tree. Nature, 410, 419–420

    PubMed  CAS  Google Scholar 

  • Lockwood, C. A., Kimbel, W. H., & Johanson, D. C., (2000). Temporal trends and metric variation in the mandibles and dentition of Australopithecus afarensis. Journal of Human Evolution, 39, 23–55

    PubMed  CAS  Google Scholar 

  • Lockwood, C. A., Richmond, B. G., Jungers, W. L., & Kimbel, W. H., (1996). Randomization procedures and sexual dimorphism in Australopithecus afarensis. Journal of Human Evolution, 31, 537–548

    Google Scholar 

  • Lockwood, C. A., & Tobias, P. V., (1999). A large male hominin cranium from Sterkfontein, South Africa, and the status of Australopithecus africanus. Journal of Human Evolution, 36, 637–685

    PubMed  CAS  Google Scholar 

  • Marroig, G., & Cheverud, J. M., (2001). A comparison of phenotypic variation and covariation patterns and the role of phylogeny, ecology, and ontogeny during cranial evolution of new world monkeys. Evolution, 55, 2576–6000

    PubMed  CAS  Google Scholar 

  • Marroig, G., & Cheverud, J. M., (2005). Size as a line of least evolutionary resistance: Diet and adaptive morphological radiation in New World monkeys. Evolution, 59, 1128–1142

    PubMed  Google Scholar 

  • McBrearty, S., & Jablonski, N. G., (2005). First fossil chimpanzee. Nature, 437, 105–108

    PubMed  CAS  Google Scholar 

  • McHenry, H. M., (1992). Body size and proportions in early hominids. American Journal of Physical Anthropology, 87, 407–431

    PubMed  CAS  Google Scholar 

  • McHenry, H. M., (1993). How big were early hominids? Evolutionary Anthropology, 1, 15–20

    Google Scholar 

  • McHenry, H. M., (2002). Introduction to the fossil record of human ancestry. In W. Hartwig (Ed.), The primate fossil record (pp. 401–405). Cambridge, UK: Cambridge University Press

    Google Scholar 

  • Moggi-Cecchi, J., Grine, F. E., & Tobias, P. V., (2006). Early hominid dental remains from Members 4 and 5 of the Sterkfontein Formaiton (1966–1996 excavations):Catalogue, individual associations, morphological descriptions and initial metric analysis. Journal of Human Evolution, 50, 239–328

    PubMed  Google Scholar 

  • Murphy, G. L., (2003). The downside of categories. Trends in Cognitive Sciences, 7, 513–514

    PubMed  Google Scholar 

  • Patterson, N., Richter, D. J., Gnerre, S., Lander, E. S., & Reich, D., (2006). Genetic evidence for complex speciation of humans and chimpanzees. Nature doi:10.1038/nature04789,

  • Pickering, T. R., Clarke, R. J., & Moggi-Cecchi, J., (2004). Role of carnivores in the accumulaiton of the Sterkfontein Member 4 hominid assemblage: A taphonomic reassessment of the complete hominid fossil sample (1936–1999). American Journal of Physical Anthropology, 125, 1–15

    PubMed  Google Scholar 

  • Pickford, M., & Senut, B., (2001). The geological and faunal context of late Miocene hominid remains from Lukeino, Kenya. Comptes rendus de l'Académie des sciences. Série III, Sciences de la vie, 332, 145–152

    Google Scholar 

  • Pickford, M., Senut, B., Gommery, D., & Treil, J., (2002). Bipedalism in Orrorin tugenensis is revealed by its femora. Comptes Rendus Palevol, 1, 191–203

    Google Scholar 

  • Pilbeam, D., & Young, N., (2004). Hominoid evolution: Synthesizing disparate data. Comptes Rendus Palevol, 3, 305–321

    Google Scholar 

  • Plavcan, J. M., Lockwood, C. A., Kimbel, W. H., Lague, M. R., & Harmon, E. H., (2005). Sexual dimorphism in Australopithecus afarensis revisited: How strong is the case for a human-like pattern of dimorphism? Journal of Human Evolution, 48, 313–320

    PubMed  Google Scholar 

  • Reed, D. L., Smith, V. S., Hammond, S. L., Rogers, A. R., & Clayton, D. H., (2004). Genetic analysis of lice supports direct contact between modern and archaic humans. PLoS Biology, 2, 340

    Google Scholar 

  • Reed, K. E., (1997). Early hominid evolution and ecological change through the African Plio-Pleistocene. Journal of Human Evolution, 32, 289–322

    PubMed  CAS  Google Scholar 

  • Reno, P. L., Meindl, R. S., McCollum, M. A., & Lovejoy, C. O., (2003). Sexual dimorphism in Australopithecus afarensis was similar to that of modern humans. Proceedings of National Academy Science USA, 100, 9404–9409

    CAS  Google Scholar 

  • Reno, P. L., Meindl, R. S., McCollum, M. A., & Lovejoy, C. O., (2005). The case is unchanged and remains robust: Australopithecus afarensis exhibits only moderate sexual dimorphism. A reply to Plavcan et al. (2005). Journal of Human Evolution, 49, 279–288

    PubMed  Google Scholar 

  • Robinson, J. T., (1960). The affinities of the new Olduvai Australopithecine. Nature, 186, 456–458

    Google Scholar 

  • Sarmiento, E. E., Stiner, E., & Mowbray, K., (2002). Morphology-based systematics (MBS) and problems with fosisl homonoid and hominid systematics. The Anatomical Record (New Anat.), 269, 50–66

    Google Scholar 

  • Scheffer, M., & Van Nes, E. H., (2006). Self-organised similarity, the evolutionary emergence of groups of similar species. Proceedings of National Academy Science USA, 103, 6230–6235

    CAS  Google Scholar 

  • Schluter, D., (2002). The ecology of adaptive radiation. Oxford, UK: Oxford University Press

    Google Scholar 

  • Schwartz, G. T., (2000). Taxonomic and functional aspects of the patterning of enamel thickness distribution in extant large-bodied hominoids. American Journal of Physical Anthropology, 111, 221–244

    PubMed  CAS  Google Scholar 

  • Senut, B., Pickford, M., Gommery, D., Mein, P., Cheboi, K., & Coppens, Y., (2001). First hominid from the Miocene (Lukeino Formation, Kenya). Earth and Planetary Sciences, 332, 137–144

    Google Scholar 

  • Shea, B. T., (1983). Size and diet in the evolution of African ape craniodental form. Folia primatologie, 40, 32–68

    Article  CAS  Google Scholar 

  • Smith, R. J., (2005). Species recognition in paleoanthropology: Implications of small sample sizes. In D. E. Lieberman, R. J. Smith, & J. Kelley (Eds.), Interpreting the past: Essays on human, primate, and mammal evolution in honor of David Pilbeam (pp. 207–219). Boston: Brill Academic Publishers

    Google Scholar 

  • Sponheimer, M., Loudon, J. E., Codron, D., Howells, M. E., Pruetz, J. D., Codron, J., De Ruiter, D. J., & Lee-Thorp, J. A., (2006a). Do savanna chimpanzees consume C4 resources? Journal of Human Evolution, 51, 128–133

    PubMed  CAS  Google Scholar 

  • Sponheimer, M., Passey, B. H., De Ruiter, D. J., Guatelli-Steinberg, D., Cerling, T. E., & Lee-Thorp, J. A., (2006b). Isotopic evidence for dietary variability in the early hominin Paranthropus robustus. Science, 314, 980–982

    PubMed  CAS  Google Scholar 

  • Stanford, C. B., (2006). The behavioral ecology of sympatric African apes: Implicaitons for understanding fossil hominoid ecology. Primates, 47, 91–101

    PubMed  Google Scholar 

  • Stefansson, H., Helgason, A., Thorleifsson, G., Steinthorsdottir, V., Masson, G., Barnard, J., Baker, A., Jonasdottir, A., Ingason, A., Gudnadottir, V. G., Desnica, N., Hicks, A., Gylfason, A., Gudbjartsson, D. F., Jonsdottir, G. M., Sainz, J., Agnarsson, K., Birgisdottir, B., Ghosh, S., Olafsdottir, A., Cazier, J.-B., Kristjannsom, K., Frigge, M. L., Thorgeirsson, T. E., Gulcher, J. R., Kong, A., & Stefansson, K., (2005). A common inversion under selection in Europeans. Nature Genetics, 37, 129–137

    PubMed  CAS  Google Scholar 

  • Swisher, C. C. I., Rink, W. J., Antón, S. C., Schwarcz, H. P., Curtis, G. H., Suprijo, A., & Widiasmoro, (1996). Latest Homo erectus of Java: Potential contemporaneity with Homo sapiens in Southeast Asia. Science, 274, 1870–1874

    PubMed  CAS  Google Scholar 

  • Teaford, M. F., & Ungar, P. S., (2000). Diet and the evolution of the earliest human ancestors. PNAS, 97, 13506–13511

    PubMed  CAS  Google Scholar 

  • Trinkaus, E., (2005). Early modern humans. Annual Review of Anthropology, 34, 207–230

    Google Scholar 

  • Tversky, A., & Kahneman, D., (1974). Judgement under uncertainty: Heuristics and biases. Science, 185, 1124–1131

    PubMed  Google Scholar 

  • Ungar, P. S., (2004). Dental topography and diets of Australopithecus afarensis and early Homo. Journal of Human Evolution, 46, 605–622

    PubMed  Google Scholar 

  • Vignaud, P., Duringer, P., Mackaye, H. T., Likius, A., Blondel, C., Boisserie, J., De Bonis, L., Eisenmann, V., Etienne, M., Geraads, D., Guy, F., Lehmann, T., Lihoreau, F., Lopez-Martinez, N., Mourer-Chauvir’e, C., Otero, O., Rage, J., Schuster, M., Viriot, L., Zazzo, A., & Brunet, M., (2002). Geology and palaeontology of the Upper Miocene Toros-Menalla hominid locality, Chad. Nature, 418, 152–155

    PubMed  CAS  Google Scholar 

  • Vrba, E., (1985). Ecological and adaptive changes associated with early hominid evolution. In E. Delson (Ed.), Ancestors: The hard evidence (pp. 63–71). New York: Alan R. Liss

    Google Scholar 

  • Vrba, E. S., (1980). The significance of bovid remains as indicators of environment and predation patterns. In A. Behrensmeyer, & A. Hill (Eds.), Fossils in the making: Vertebrate taphonomy and paleoecology (pp. 247–271). Chicago: University of Chicago Press

    Google Scholar 

  • Walker, J., Cliff, R. A., & Latham, A. G., (2006). U-Pb isotopic age of the StW 573 hominid from Sterkfontein, South Africa. Science, 314, 1592–1594

    PubMed  CAS  Google Scholar 

  • Ward, C. V., Leakey, M. G., & Walker, A., (2001). Morphology of Australopithecus anamensis from Kanapoi and Allia Bay, Kenya. Journal of Human Evolution, 41, 255–368

    PubMed  CAS  Google Scholar 

  • White, T. D., (2002). Earliest homiinids. In W. Hartwig (Ed.), The primate fossil record (pp. 407–417). Cambridge: Cambridge University Press

    Google Scholar 

  • White, T. D., (2003). Early hominids – diversity or distortion? Science, 299, 1994–1996

    PubMed  CAS  Google Scholar 

  • White, T. D., Suwa, G., & Asfaw, B., (1994). Australopithecus ramidus, a new species of early hominid from Aramis, Ethiopia. Nature, 371, 306–312

    PubMed  CAS  Google Scholar 

  • White, T. D., WoldeGabriel, G., Asfaw, B., Ambrose, S. H., Beyene, S., Bernor, R. L., Boisserie, J.-R., Currie, B., Gilbert, H., Haile-Selassie, Y., Hart, W. K., Hlusko, L. J., Howell, F. C., Kono, R. T., Lehmann, T., Louchart, A., Lovejoy, C. O., Renne, P. R., Saegusa, H., Vrba, E. S., Wesselman, H., & Suwa, G., (2006). Asa Issie, Aramis and the origin of Australopithecus. Nature, 440, 883–889

    PubMed  CAS  Google Scholar 

  • WoldeGabriel, G., Haile-Selassie, Y., Renne, P. R., Hart, W. K., Ambrose, S. H., Asfaw, B., Heiken, G., & White, T., (2001). Geology and palaeontology of the Late Miocene Middle Awash valley, Afar rift, Ethiopia. Nature, 412, 175–177

    PubMed  CAS  Google Scholar 

  • WoldeGabriel, G., White, T. D., Suwa, G., Renne, P., De Heinzelin, J., Hart, W. K., & Heiken, G., (1994). Ecological and temporal placement of early Pliocene hominids at Aramis, Ethiopia. Nature, 371, 330–333

    PubMed  CAS  Google Scholar 

  • Wolpoff, M., Senut, B., Pickford, M., & Hawks, J., (2002). Sahelanthropus or ‘Sahelpithecus’? Nature, 419, 581–582

    PubMed  CAS  Google Scholar 

  • Wood, B., (1991). Koobi Fora research project, Vol. 4. Hominid Cranial Remains. Oxford: Clarendon Press

    Google Scholar 

  • Wood, B., Wood, C., & Konigsberg, L., (1994). Paranthropus boisei: An example of evolutionary stasis? American Journal of Physical Anthropology, 95, 117–136

    PubMed  CAS  Google Scholar 

  • Wood, B. A., & Chamberlain, A. T., (1987). The nature and affinities of the “robust” australopithecines: A review. Journal of Human Evolution, 16, 625–641

    Google Scholar 

  • Wood, B. A., & Strait, D. S., (2004). Patterns of resource use in early Homo and Paranthropus. Journal of Human Evolution, 46, 119–162

    PubMed  Google Scholar 

  • Zilhao, J., & Trinkaus, E., (2002). Portrait of the artist as a child. The Gravettian Human Skeleton from the Abrigo do Lagar Velho and its Archaeological Context. Lisbon: Instituto Portugeês de Arqueologia

    Google Scholar 

Download references

Acknowledgements

We thank Benedikt Hallgrímsson for inviting us to write this review. Jim Cheverud, Charlie Lockwood, Matt Sponheimer, and three anonymous reviewers provided extremely helpful comments on previous versions of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rebecca Rogers Ackermann.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ackermann, R.R., Smith, R.J. The Macroevolution of our Ancient Lineage: What We Know (or Think We Know) about Early Hominin Diversity. Evol. Biol. 34, 72–85 (2007). https://doi.org/10.1007/s11692-007-9002-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11692-007-9002-7

Keywords

Navigation