Skip to main content
Log in

Arthrogryposis multiplex congenita: classification, diagnosis, perioperative care, and anesthesia

  • Review
  • Published:
Frontiers of Medicine Aims and scope Submit manuscript

Abstract

Arthrogryposis multiplex congenita (AMC) is a rare disorder characterized by non-progressive, multiple contractures. In addition to affected extremities, patients may also present microstomia, decreased temporomandibular joint mobility. Although the etiology of AMC is unclear, any factor that decreases fetal movement is responsible for AMC. Thus, accurate diagnosis and classification are crucial to the appropriate treatment of AMC. The development of ultrasound technology has enabled prenatal diagnosis. Very early treatment is favorable, and multidisciplinary treatment is necessary to improve the function of AMC patients. Most patients require surgery to release contracture and reconstruct joints. However, perioperative care is challenging, and difficult airway is the first concern of anesthesiologists. Postoperative pulmonary complications are common and regional anesthesia is recommended for postoperative analgesia. This review on AMC is intended for anesthesiologists. Thus, we discuss the treatment and perioperative management of patients undergoing surgery, as well as the diagnosis and classification of AMC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hall JG. Arthrogryposis multiplex congenita: etiology, genetics, classification, diagnostic approach, and general aspects. J Pediatr Orthop B 1997; 6(3): 159–166

    Article  PubMed  CAS  Google Scholar 

  2. Hall JG, Reed SD, Greene G. The distal arthrogryposes: delineation of new entities—review and nosologic discussion. Am J Med Genet 1982; 11(2): 185–239

    Article  PubMed  CAS  Google Scholar 

  3. Fahy MJ, Hall JG. A retrospective study of pregnancy complications among 828 cases of arthrogryposis. Genet Couns 1990; 1(1): 3–11

    PubMed  CAS  Google Scholar 

  4. Darin N, Kimber E, Kroksmark AK, Tulinius M. Multiple congenital contractures: birth prevalence, etiology, and outcome. J Pediatr 2002; 140(1): 61–67

    Article  PubMed  Google Scholar 

  5. Hyett J, Noble P, Sebire NJ, Snijders R, Nicolaides KH. Lethal congenital arthrogryposis presents with increased nuchal translucency at 10–14 weeks of gestation. Ultrasound Obstet Gynecol 1997; 9(5): 310–313

    Article  PubMed  CAS  Google Scholar 

  6. Mejlachowicz D, Nolent F, Maluenda J, Ranjatoelina-Randrianaivo H, Giuliano F, Gut I, Sternberg D, Laquerrière A, Melki J. Truncating mutations of MAGEL2, a gene within the Prader-Willi locus, are responsible for severe arthrogryposis. Am J Hum Genet 2015; 97(4): 616–620

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Bamshad M, van Heest AE, Pleasure D. Arthrogryposis: a review and update. J Bone Joint Surg Am 2009; 91(Suppl 4): 40–46

    Article  PubMed  PubMed Central  Google Scholar 

  8. Bamshad M, Jorde LB, Carey JC. A revised and extended classification of the distal arthrogryposes. Am J Med Genet 1996; 65(4): 277–281

    Article  PubMed  CAS  Google Scholar 

  9. Krakowiak PA, Bohnsack JF, Carey JC, Bamshad M. Clinical analysis of a variant of Freeman-Sheldon syndrome (DA2B). Am J Med Genet 1998; 76(1): 93–98

    Article  PubMed  CAS  Google Scholar 

  10. Stevenson DA, Carey JC, Palumbos J, Rutherford A, Dolcourt J, Bamshad MJ. Clinical characteristics and natural history of Freeman-Sheldon syndrome. Pediatrics 2006; 117(3): 754–762

    Article  PubMed  Google Scholar 

  11. Freeman EA, Sheldon J. Cranio-carpotarsal dystrophy: undescribed congenital malformation. Arch Dis Child 1938; 13: 227–283

    Article  Google Scholar 

  12. Pallotta R, Ehresmann T, Fusilli P. Occurrence of Dandy-Walker anomaly in a familial case of distal arthogryposis type IIB. Am J Med Genet 2000; 95(5): 477–481

    Article  PubMed  CAS  Google Scholar 

  13. Pallotta R, Ehresmann T, Fusilli P. Ocular findings in distal arthrogryposis. Ophthalmic Genet 2001; 22(2): 125–130

    Article  PubMed  CAS  Google Scholar 

  14. Williams MS, Elliott CG, Bamshad MJ. Pulmonary disease is a component of distal arthrogryposis type 5. Am J Med Genet A 2007; 143A(7): 752–756

    Article  PubMed  Google Scholar 

  15. Ramos Arroyo MA, Weaver DD, Beals RK. Congenital contractural arachnodactyly. Report of four additional families and review of literature. Clin Genet 1985; 27(6): 570–581

    PubMed  CAS  Google Scholar 

  16. Viljoen D, Ramesar R, Behari D. Beals syndrome: clinical and molecular investigations in a kindred of Indian descent. Clin Genet 1991; 39(3): 181–188

    Article  PubMed  CAS  Google Scholar 

  17. van der Linden V, Filho EL, Lins OG, van der Linden A, Aragão MF, Brainer-Lima AM, Cruz DD, Rocha MA, Sobral da Silva PF, Carvalho MD, do Amaral FJ, Gomes JA, Ribeiro De Medeiros IC, Ventura CV, Ramos RC. Congenital Zika syndrome with arthrogryposis: retrospective case series study. BMJ 2016; 354: i3899

    Article  PubMed  PubMed Central  Google Scholar 

  18. Tajsharghi H, Kimber E, Kroksmark AK, Jerre R, Tulinius M, Oldfors A. Embryonic myosin heavy-chain mutations cause distal arthrogryposis and developmental myosin myopathy that persists postnatally. Arch Neurol 2008; 65(8): 1083–1090

    Article  PubMed  Google Scholar 

  19. Polizzi A, Huson SM, Vincent A. Teratogen update: maternal myasthenia gravis as a cause of congenital arthrogryposis. Teratology 2000; 62(5): 332–341

    Article  PubMed  CAS  Google Scholar 

  20. Bayram Y, Karaca E, Coban Akdemir Z, Yilmaz EO, Tayfun GA, Aydin H, Torun D, Bozdogan ST, Gezdirici A, Isikay S, Atik MM, Gambin T, Harel T, El-Hattab AW, Charng WL, Pehlivan D, Jhangiani SN, Muzny DM, Karaman A, Celik T, Yuregir OO, Yildirim T, Bayhan IA, Boerwinkle E, Gibbs RA, Elcioglu N, Tuysuz B, Lupski JR. Molecular etiology of arthrogryposis in multiple families of mostly Turkish origin. J Clin Invest 2016; 126(2): 762–778

    Article  PubMed  PubMed Central  Google Scholar 

  21. Tajsharghi H, Kimber E, Holmgren D, Tulinius M, Oldfors A. Distal arthrogryposis and muscle weakneßs associated with a ß-tropomyosin mutation. Neurology 2007; 68(10): 772–775

    Article  PubMed  CAS  Google Scholar 

  22. Jiang M, Zhao X, Han W, Bian C, Li X, Wang G, Ao Y, Li Y, Yi D, Zhe Y, Lo WH, Zhang X, Li J. A novel deletion in TNNI2 causes distal arthrogryposis in a large Chinese family with marked variability of expression. Hum Genet 2006; 120(2): 238–242

    Article  PubMed  CAS  Google Scholar 

  23. Sung SS, Brassington AM, Krakowiak PA, Carey JC, Jorde LB, Bamshad M. Mutations in TNNT3 cause multiple congenital contractures: a second locus for distal arthrogryposis type 2B. Am J Hum Genet 2003; 73(1): 212–214

    Article  PubMed  PubMed Central  Google Scholar 

  24. Beck AE, McMillin MJ, Gildersleeve HI, Shively KM, Tang A, Bamshad MJ. Genotype-phenotype relationships in Freeman- Sheldon syndrome. Am J Med Genet A 2014; 164A(11): 2808–2813

    Article  PubMed  CAS  Google Scholar 

  25. Gurnett CA, Desruisseau DM, McCall K, Choi R, Meyer ZI, Talerico M, Miller SE, Ju JS, Pestronk A, Connolly AM, Druley TE, Weihl CC, Dobbs MB. Myosin binding protein C1: a novel gene for autosomal dominant distal arthrogryposis type 1. Hum Mol Genet 2010; 19(7): 1165–1173

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. McMillin MJ, Below JE, Shively KM, Beck AE, Gildersleeve HI, Pinner J, Gogola GR, Hecht JT, Grange DK, Harris DJ, Earl DL, Jagadeesh S, Mehta SG, Robertson SP, Swanson JM, Faustman EM, Mefford HC, Shendure J, Nickerson DA, Bamshad MJ; University of Washington Center for Mendelian Genomics. Mutations in ECEL1 cause distal arthrogryposis type 5D. Am J Hum Genet 2013; 92(1): 150–156

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Karakaya M, Heller R, Kunde V, Zimmer KP, Chao CM, Nürnberg P, Cirak S. Novel mutations in the nonselective sodium leak channel (NALCN) lead to distal arthrogryposis with increased muscle tone. Neuropediatrics 2016; 47(4): 273–277

    Article  PubMed  CAS  Google Scholar 

  28. Dolk H. EUROCAT: 25 years of European surveillance of congenital anomalies. Arch Dis Child Fetal Neonatal Ed 2005; 90 (5): F355–F358

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Filges I, Hall JG. Failure to identify antenatal multiple congenital contractures and fetal akinesia—proposal of guidelines to improve diagnosis. Prenat Diagn 2013; 33(1): 61–74

    Article  PubMed  Google Scholar 

  30. Vila-Vives JM, Hidalgo-Mora JJ, Soler I, Rubio J, Quiroga R, Perales A. Fetal arthrogryposis secondary to a giant maternal uterine leiomyoma. Case Rep Obstet Gynecol 2012,2012: 726732

    PubMed  PubMed Central  Google Scholar 

  31. Navti OB, Kinning E, Vasudevan P, Barrow M, Porter H, Howarth E, Konje J, Khare M. Review of perinatal management of arthrogryposis at a large UK teaching hospital serving a multiethnic population. Prenat Diagn 2010; 30(1): 49–56

    PubMed  CAS  Google Scholar 

  32. Hyett J, Noble P, Sebire NJ, Snijders R, Nicolaides KH. Lethal congenital arthrogryposis presents with increased nuchal translucency at 10-14 weeks of gestation. Ultrasound Obstet Gynecol 1997; 9(5): 310–313

    Article  PubMed  CAS  Google Scholar 

  33. Scott H, Hunter A, Bédard B. Non-lethal arthrogryposis multiplex congenita presenting with cystic hygroma at 13 weeks gestational age. Prenat Diagn 1999; 19(10): 966–971

    Article  PubMed  CAS  Google Scholar 

  34. Kurjak A, Vecek N, Hafner T, Bozek T, Funduk-Kurjak B, Ujevic B. Prenatal diagnosis: what does four-dimensional ultrasound add? J Perinat Med 2002; 30(1): 57–62

  35. Binkiewicz-Glinska A, Sobierajska-Rek A, Bakula S, Wierzba J, Drewek K, Kowalski IM, Zaborowska-Sapeta K. Arthrogryposis in infancy, multidisciplinary approach: case report. BMC Pediatr 2013; 13(1): 184

    Article  PubMed  PubMed Central  Google Scholar 

  36. Matar HE, Beirne P, Garg N. The effectiveness of the Ponseti method for treating clubfoot associated with arthrogryposis: up to 8 years follow-up. J Child Orthop 2016; 10(1): 15–18

    Article  PubMed  PubMed Central  Google Scholar 

  37. Martin S, Tobias JD. Perioperative care of the child with arthrogryposis. Paediatr Anaesth 2006; 16(1): 31–37

    Article  PubMed  CAS  Google Scholar 

  38. Robinson PJ. Freeman Sheldon syndrome: severe upper airway obstruction requiring neonatal tracheostomy. Pediatr Pulmonol 1997; 23(6): 457–459

    Article  PubMed  CAS  Google Scholar 

  39. Schefels J, Wenzl TG, Merz U, Ramaekers V, Holzki J, Rudnik-Schoeneborn S, Hermanns B, Hörnchen H. Functional upper airway obstruction in a child with Freeman-Sheldon syndrome. ORL J Otorhinolaryngol Relat Spec 2002; 64(1): 53–56

    Article  PubMed  Google Scholar 

  40. Chen A, Lai HY, Lee Y, Yang YL, Ho JS, Shyr MH. Anesthesia for Freeman-Sheldon syndrome using a folded laryngeal mask airway. Anesth Analg 2005; 101(2): 614–615

    Article  PubMed  Google Scholar 

  41. Thomas PB, Parry MG. The difficult paediatric airway: a new method of intubation using the laryngeal mask airway, Cook airway exchange catheter and tracheal intubation fibrescope. Paediatr Anaesth 2001; 11(5): 618–621

    Article  PubMed  CAS  Google Scholar 

  42. Kim JS, Park SY, Min SK, Kim JH, Lee SY, Moon BK. Awake nasotracheal intubation using fiberoptic bronchoscope in a pediatric patient with Freeman-Sheldon syndrome. Paediatr Anaesth 2005; 15(9): 790–792

    Article  PubMed  CAS  Google Scholar 

  43. Sadacharam K, Ahmad M. Epidural anesthesia for labor pain and cesarean section in a parturient with arthrogryposis multiplex congenita. J Anaesthesiol Clin Pharmacol 2016; 32(3): 410–411

    Article  PubMed  PubMed Central  Google Scholar 

  44. Ponde V, Desai AP, Shah D. Comparison of success rate of ultrasound-guided sciatic and femoral nerve block and neurostimulation in children with arthrogryposis multiplex congenita: a randomized clinical trial. Paediatr Anaesth 2013; 23(1): 74–78

    Article  PubMed  Google Scholar 

  45. Ion T, Cook-Sather SD, Finkel RS, Cucchiaro G. Fascia iliaca block for an infant with arthrogryposis multiplex congenita undergoing muscle biopsy. Anesth Analg 2005; 100(1): 82–84

    Article  PubMed  Google Scholar 

  46. Borazan H, Selcuk Uluer M, Sahin O, Okesli S. Regional anesthesia with a single spinal anesthesia using hyperbaric bupivacaine in a child with arthroglyposis multiplex congenita. J Anesth 2012; 26(2): 283–285

    Article  PubMed  Google Scholar 

  47. Wood GG, Jacka MJ. Spinal hematoma following spinal anesthesia in a patient with spina bifida occulta. Anesthesiology 1997; 87(4): 983–984

    Article  PubMed  CAS  Google Scholar 

  48. Tidmarsh MD, May AE. Epidural anaesthesia and neural tube defects. Int J Obstet Anesth 1998; 7(2): 111–114

    Article  PubMed  CAS  Google Scholar 

  49. Hopkins PM, Ellis FR, Halsall PJ. Hypermetabolism in arthrogryposis multiplex congenital. Anaesthesia 1991; 46(5): 374–375

    Article  PubMed  CAS  Google Scholar 

  50. Chowdhuri R, Samui S, Kundu AK. Anesthetic management of a neonate with arthrogryposis multiplex congenita for emergency laparotomy. J Anaesthesiol Clin Pharmacol 2011; 27(2): 244–246

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xuerong Yu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, L., Yu, X. Arthrogryposis multiplex congenita: classification, diagnosis, perioperative care, and anesthesia. Front. Med. 11, 48–52 (2017). https://doi.org/10.1007/s11684-017-0500-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11684-017-0500-4

Keywords

Navigation