Skip to main content
Log in

The role of microRNAs in adipocyte differentiation

  • Review
  • Published:
Frontiers of Medicine Aims and scope Submit manuscript

Abstract

Adipocytes differentiate from mesenchymal stem cells (MSCs) in a process known as adipogenesis. The programme of adipogenesis is regulated by the sequential activation of transcription factors and several signaling pathways. There is growing evidence indicating that a class of small non-coding single-stranded RNAs known as “microRNAs (miRNAs)” also are involved in this process. In this review, we summarize the biology and functional mechanisms of miRNAs in adipocyte differentiation. In addition, we further discuss the miRNAs profiling, the miRNAs function and miRNAs target prediction in the adipogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gesta S, Tseng YH, Kahn CR. Developmental origin of fat: tracking obesity to its source. Cell 2007; 131(2): 242–256

    Article  PubMed  CAS  Google Scholar 

  2. Otto TC, Lane MD. Adipose development: from stem cell to adipocyte. Crit Rev Biochem Mol Biol 2005; 40(4): 229–242

    Article  PubMed  CAS  Google Scholar 

  3. Gregoire FM, Smas CM, Sul HS. Understanding adipocyte differentiation. Physiol Rev 1998; 78(3): 783–809

    PubMed  CAS  Google Scholar 

  4. Rosen ED, Walkey CJ, Puigserver P, Spiegelman BM. Transcriptional regulation of adipogenesis. Genes Dev 2000; 14(11): 1293–1307

    PubMed  CAS  Google Scholar 

  5. MacDougald OA, Mandrup S. Adipogenesis: forces that tip the scales. Trends Endocrinol Metab 2002; 13(1): 5–11

    Article  PubMed  CAS  Google Scholar 

  6. Blüher M, Michael MD, Peroni OD, Ueki K, Carter N, Kahn BB, Kahn CR. Adipose tissue selective insulin receptor knockout protects against obesity and obesity-related glucose intolerance. Dev Cell 2002; 3(1): 25–38

    Article  PubMed  Google Scholar 

  7. Smith PJ, Wise LS, Berkowitz R, Wan C, Rubin CS. Insulin-like growth factor-I is an essential regulator of the differentiation of 3T3-L1 adipocytes. J Biol Chem 1988; 263(19): 9402–9408

    PubMed  CAS  Google Scholar 

  8. Kim VN. MicroRNA biogenesis: coordinated cropping and dicing. Nat Rev Mol Cell Biol 2005; 6(5): 376–385

    Article  PubMed  CAS  Google Scholar 

  9. [No authors listed]. Obesity: preventing and managing the global epidemic. Report of a WHO consultation.World Health Organ Tech Rep Ser 2000; 894: i–xii, 1–253

  10. Li H, Xie H, Liu W, Hu R, Huang B, Tan YF, Xu K, Sheng ZF, Zhou HD, Wu XP, Luo XH. A novel microRNA targeting HDAC5 regulates osteoblast differentiation in mice and contributes to primary osteoporosis in humans. J Clin Invest 2009; 119(12): 3666–3677

    Article  PubMed  CAS  Google Scholar 

  11. He L, Hannon GJ. MicroRNAs: small RNAs with a big role in gene regulation. Nat Rev Genet 2004; 5(7): 522–531

    Article  PubMed  CAS  Google Scholar 

  12. Yang L, Cheng P, Chen C, He HB, Xie GQ, Zhou HD, Xie H, Wu XP, Luo XH. miR-93/Sp7 function loop mediates osteoblast mineralization. J Bone Miner Res 2012; 27(7): 1598–1606

    Article  PubMed  CAS  Google Scholar 

  13. Hu R, Liu W, Li H, Yang L, Chen C, Xia ZY, Guo LJ, Xie H, Zhou HD, Wu XP, Luo XH. A Runx2/miR-3960/miR-2861 regulatory feedback loop during mouse osteoblast differentiation. J Biol Chem 2011; 286(14): 12328–12339

    Article  PubMed  CAS  Google Scholar 

  14. Li H, Li WX, Ding SW. Induction and suppression of RNA silencing by an animal virus. Science 2002; 296(5571): 1319–1321

    Article  PubMed  CAS  Google Scholar 

  15. Zeng Y, Yi R, Cullen BR. MicroRNAs and small interfering RNAs can inhibit mRNA expression by similar mechanisms. Proc Natl Acad Sci USA 2003; 100(17): 9779–9784

    Article  PubMed  CAS  Google Scholar 

  16. Lee Y, Ahn C, Han J, Choi H, Kim J, Yim J, Lee J, Provost P, Rådmark O, Kim S, Kim VN. The nuclear RNase III Drosha initiates microRNA processing. Nature 2003; 425(6956): 415–419

    Article  PubMed  CAS  Google Scholar 

  17. Yi R, Qin Y, Macara IG, Cullen BR. Exportin-5 mediates the nuclear export of pre-microRNAs and short hairpin RNAs. Genes Dev 2003; 17(24): 3011–3016

    Article  PubMed  CAS  Google Scholar 

  18. Lund E, Güttinger S, Calado A, Dahlberg JE, Kutay U. Nuclear export of microRNA precursors. Science 2004; 303(5654): 95–98

    Article  PubMed  CAS  Google Scholar 

  19. Gregory RI, Yan KP, Amuthan G, Chendrimada T, Doratotaj B, Cooch N, Shiekhattar R. The Microprocessor complex mediates the genesis of microRNAs. Nature 2004; 432(7014): 235–240

    Article  PubMed  CAS  Google Scholar 

  20. Tan GS, Garchow BG, Liu X, Yeung J, Morris JP 4th, Cuellar TL, McManus MT, Kiriakidou M. Expanded RNA-binding activities of mammalian Argonaute 2. Nucleic Acids Res 2009; 37(22): 7533–7545

    Article  PubMed  CAS  Google Scholar 

  21. Hutvágner G, Zamore PD. A microRNA in a multiple-turnover RNAi enzyme complex. Science 2002; 297(5589): 2056–2060

    Article  PubMed  Google Scholar 

  22. Pillai RS, Bhattacharyya SN, Filipowicz W. Repression of protein synthesis by miRNAs: how many mechanisms? Trends Cell Biol 2007; 17(3): 118–126

    Article  PubMed  CAS  Google Scholar 

  23. Shingara J, Keiger K, Shelton J, Laosinchai-Wolf W, Powers P, Conrad R, Brown D, Labourier E. An optimized isolation and labeling platform for accurate microRNA expression profiling. RNA 2005; 11(9): 1461–1470

    Article  PubMed  CAS  Google Scholar 

  24. Hilton C, Neville MJ. Karpe F. MicroRNAs in adipose tissue: their role in adipogenesis and obesity. Int J Obes (Lond) 2013; 37: 325–332

    Article  CAS  Google Scholar 

  25. Castoldi M, Schmidt S, Benes V, Noerholm M, Kulozik AE, Hentze MW, Muckenthaler MU. A sensitive array for microRNA expression profiling (miChip) based on locked nucleic acids (LNA). RNA 2006; 12(5): 913–920

    Article  PubMed  CAS  Google Scholar 

  26. Válóczi A, Hornyik C, Varga N, Burgyán J, Kauppinen S, Havelda Z. Sensitive and specific detection of microRNAs by northern blot analysis using LNA-modified oligonucleotide probes. Nucleic Acids Res 2004; 32(22): e175

    Article  PubMed  Google Scholar 

  27. Neville MJ, Collins JM, Gloyn AL, McCarthy MI, Karpe F. Comprehensive human adipose tissue mRNA and microRNA endogenous control selection for quantitative real-time-PCR normalization. Obesity (Silver Spring) 2011; 19(4): 888–892

    Article  CAS  Google Scholar 

  28. Wang Z, Gerstein M, Snyder M. RNA-Seq: a revolutionary tool for transcriptomics. Nat Rev Genet 2009; 10(1): 57–63

    Article  PubMed  CAS  Google Scholar 

  29. Lee EJ, Baek M, Gusev Y, Brackett DJ, Nuovo GJ, Schmittgen TD. Systematic evaluation of microRNA processing patterns in tissues, cell lines, and tumors. RNA 2008; 14(1): 35–42

    Article  PubMed  CAS  Google Scholar 

  30. Kajimoto K, Naraba H, Iwai N. MicroRNA and 3T3-L1 pre-adipocyte differentiation. RNA 2006; 12(9): 1626–1632

    Article  PubMed  CAS  Google Scholar 

  31. Xie H, Lim B, Lodish HF. MicroRNAs induced during adipogenesis that accelerate fat cell development are downregulated in obesity. Diabetes 2009; 58(5): 1050–1057

    Article  PubMed  CAS  Google Scholar 

  32. Ailhaud G, Grimaldi P, Négrel R. Cellular and molecular aspects of adipose tissue development. Annu Rev Nutr 1992; 12(1): 207–233

    Article  PubMed  CAS  Google Scholar 

  33. Rosen ED, Spiegelman BM. Molecular regulation of adipogenesis. Annu Rev Cell Dev Biol 2000; 16(1): 145–171

    Article  PubMed  CAS  Google Scholar 

  34. Rosen ED, MacDougald OA. Adipocyte differentiation from the inside out. Nat Rev Mol Cell Biol 2006; 7(12): 885–896

    Article  PubMed  CAS  Google Scholar 

  35. Tontonoz P, Hu E, Spiegelman BM. Stimulation of adipogenesis in fibroblasts by PPAR gamma 2, a lipid-activated transcription factor. Cell 1994; 79(7): 1147–1156

    Article  PubMed  CAS  Google Scholar 

  36. Tamori Y, Masugi J, Nishino N, Kasuga M. Role of peroxisome proliferator-activated receptor-gamma in maintenance of the characteristics of mature 3T3-L1 adipocytes. Diabetes 2002; 51(7): 2045–2055

    Article  PubMed  CAS  Google Scholar 

  37. Hamm JK, Park BH, Farmer SR. A role for C/EBPbeta in regulating peroxisome proliferator-activated receptor gamma activity during adipogenesis in 3T3-L1 preadipocytes. J Biol Chem 2001; 276(21): 18464–18471

    Article  PubMed  CAS  Google Scholar 

  38. Shao D, Lazar MA. Peroxisome proliferator activated receptor gamma, CCAAT/enhancer-binding protein alpha, and cell cycle status regulate the commitment to adipocyte differentiation. J Biol Chem 1997; 272(34): 21473–21478

    Article  PubMed  CAS  Google Scholar 

  39. Bennett CN, Ross SE, Longo KA, Bajnok L, Hemati N, Johnson KW, Harrison SD, MacDougald OA. Regulation of Wnt signaling during adipogenesis. J Biol Chem 2002; 277(34): 30998–31004

    Article  PubMed  CAS  Google Scholar 

  40. Ross SE, Hemati N, Longo KA, Bennett CN, Lucas PC, Erickson RL, MacDougald OA. Inhibition of adipogenesis by Wnt signaling. Science 2000; 289(5481): 950–953

    Article  PubMed  CAS  Google Scholar 

  41. Arango NA, Szotek PP, Manganaro TF, Oliva E, Donahoe PK, Teixeira J. Conditional deletion of beta-catenin in the mesenchyme of the developing mouse uterus results in a switch to adipogenesis in the myometrium. Dev Biol 2005; 288(1): 276–283

    Article  PubMed  CAS  Google Scholar 

  42. Choy L, Skillington J, Derynck R. Roles of autocrine TGF-beta receptor and Smad signaling in adipocyte differentiation. J Cell Biol 2000; 149(3): 667–682

    Article  PubMed  CAS  Google Scholar 

  43. Spiegelman BM, Ginty CA. Fibronectin modulation of cell shape and lipogenic gene expression in 3T3-adipocytes. Cell 1983; 35(3 Pt 2): 657–666

    Article  PubMed  CAS  Google Scholar 

  44. Engler AJ, Sen S, Sweeney HL, Discher DE. Matrix elasticity directs stem cell lineage specification. Cell 2006; 126(4): 677–689

    Article  PubMed  CAS  Google Scholar 

  45. Xu P, Vernooy SY, Guo M, Hay BA. The Drosophila microRNA Mir-14 suppresses cell death and is required for normal fat metabolism. Curr Biol 2003; 13(9): 790–795

    Article  PubMed  CAS  Google Scholar 

  46. Esau C, Kang X, Peralta E, Hanson E, Marcusson EG, Ravichandran LV, Sun Y, Koo S, Perera RJ, Jain R, Dean NM, Freier SM, Bennett CF, Lollo B, Griffey R. MicroRNA-143 regulates adipocyte differentiation. J Biol Chem 2004; 279(50): 52361–52365

    Article  PubMed  CAS  Google Scholar 

  47. Mendell JT. miRiad roles for the miR-17-92 cluster in development and disease. Cell 2008; 133(2): 217–222

    Article  PubMed  CAS  Google Scholar 

  48. Wang Q, Li YC, Wang J, Kong J, Qi Y, Quigg RJ, Li X. miR-17-92 cluster accelerates adipocyte differentiation by negatively regulating tumor-suppressor Rb2/p130. Proc Natl Acad Sci USA 2008; 105(8): 2889–2894

    Article  PubMed  CAS  Google Scholar 

  49. Richon VM, Lyle RE, McGehee RE Jr. Regulation and expression of retinoblastoma proteins p107 and p130 during 3T3-L1 adipocyte differentiation. J Biol Chem 1997; 272(15): 10117–10124

    Article  PubMed  CAS  Google Scholar 

  50. Prince AM, May JS, Burton GR, Lyle RE, McGehee RE Jr. Proteasomal degradation of retinoblastoma-related p130 during adipocyte differentiation. Biochem Biophys Res Commun 2002; 290(3): 1066–1071

    Article  PubMed  CAS  Google Scholar 

  51. Kim YJ, Hwang SJ, Bae YC, Jung JS. MiR-21 regulates adipogenic differentiation through the modulation of TGF-beta signaling in mesenchymal stem cells derived from human adipose tissue. Stem Cells 2009; 27(12): 3093–3102

    PubMed  CAS  Google Scholar 

  52. Kim YJ, Hwang SH, Cho HH, Shin KK, Bae YC, Jung JS. MicroRNA 21 regulates the proliferation of human adipose tissuederived mesenchymal stem cells and high-fat diet-induced obesity alters microRNA 21 expression in white adipose tissues. J Cell Physiol 2012; 227(1): 183–193

    Article  PubMed  CAS  Google Scholar 

  53. Martinelli R, Nardelli C, Pilone V, Buonomo T, Liguori R, Castanò I, Buono P, Masone S, Persico G, Forestieri P, Pastore L, Sacchetti L. miR-519d overexpression is associated with human obesity. Obesity (Silver Spring) 2010; 18(11): 2170–2176

    Article  CAS  Google Scholar 

  54. Ross SE, Hemati N, Longo KA, Bennett CN, Lucas PC, Erickson RL, MacDougald OA. Inhibition of adipogenesis by Wnt signaling. Science 2000; 289(5481): 950–953

    Article  PubMed  CAS  Google Scholar 

  55. Kennell JA, Gerin I, MacDougald OA, Cadigan KM. The microRNA miR-8 is a conserved negative regulator of Wnt signaling. Proc Natl Acad Sci USA 2008; 105(40): 15417–15422

    Article  PubMed  CAS  Google Scholar 

  56. Qin L, Chen Y, Niu Y, Chen W, Wang Q, Xiao S, Li A, Xie Y, Li J, Zhao X, He Z, Mo D. A deep investigation into the adipogenesis mechanism: profile of microRNAs regulating adipogenesis by modulating the canonical Wnt/beta-catenin signaling pathway. BMC Genomics 2010; 11(1): 320

    Article  PubMed  Google Scholar 

  57. Zaragosi LE, Wdziekonski B, Brigand KL, Villageois P, Mari B, Waldmann R, Dani C, Barbry P. Small RNA sequencing reveals miR-642a-3p as a novel adipocyte-specific microRNA and miR-30 as a key regulator of human adipogenesis. Genome Biol 2011; 12(7): R64

    Article  PubMed  CAS  Google Scholar 

  58. Huang J, Zhao L, Xing L, Chen D. MicroRNA-204 regulates Runx2 protein expression and mesenchymal progenitor cell differentiation. Stem Cells 2010; 28(2): 357–364

    PubMed  Google Scholar 

  59. Ling HY, Wen GB, Feng SD, Tuo QH, Ou HS, Yao CH, Zhu BY, Gao ZP, Zhang L, Liao DF. MicroRNA-375 promotes 3T3-L1 adipocyte differentiation through modulation of extracellular signal-regulated kinase signalling. Clin Exp Pharmacol Physiol 2011; 38(4): 239–246

    Article  PubMed  CAS  Google Scholar 

  60. Lin Q, Gao Z, Alarcon RM, Ye J, Yun Z. A role of miR-27 in the regulation of adipogenesis. FEBS J 2009; 276(8): 2348–2358

    Article  PubMed  CAS  Google Scholar 

  61. Kim SY, Kim AY, Lee HW, Son YH, Lee GY, Lee JW, Lee YS, Kim JB. miR-27a is a negative regulator of adipocyte differentiation via suppressing PPARgamma expression. Biochem Biophys Res Commun 2010; 392(3): 323–328

    Article  PubMed  CAS  Google Scholar 

  62. Karbiener M, Fischer C, Nowitsch S, Opriessnig P, Papak C, Ailhaud G, Dani C, Amri EZ, Scheideler M. microRNA miR-27b impairs human adipocyte differentiation and targets PPARgamma. Biochem Biophys Res Commun 2009; 390(2): 247–251

    Article  PubMed  CAS  Google Scholar 

  63. Lee EK, Lee MJ, Abdelmohsen K, Kim W, Kim MM, Srikantan S, Martindale JL, Hutchison ER, Kim HH, Marasa BS, Selimyan R, Egan JM, Smith SR, Fried SK, Gorospe M. miR-130 suppresses adipogenesis by inhibiting peroxisome proliferator-activated receptor gamma expression. Mol Cell Biol 2011; 31(4): 626–638

    Article  PubMed  CAS  Google Scholar 

  64. Sun T, Fu M, Bookout AL, Kliewer SA, Mangelsdorf DJ. MicroRNA let-7 regulates 3T3-L1 adipogenesis. Mol Endocrinol 2009; 23(6): 925–931

    Article  PubMed  CAS  Google Scholar 

  65. Anand A, Chada K. In vivo modulation of Hmgic reduces obesity. Nat Genet 2000; 24(4): 377–380

    Article  PubMed  CAS  Google Scholar 

  66. Kinoshita M, Ono K, Horie T, Nagao K, Nishi H, Kuwabara Y, Takanabe-Mori R, Hasegawa K, Kita T, Kimura T. Regulation of adipocyte differentiation by activation of serotonin (5-HT) receptors 5-HT2AR and 5-HT2CR and involvement of microRNA-448-mediated repression of KLF5. Mol Endocrinol 2010; 24(10): 1978–1987

    Article  PubMed  CAS  Google Scholar 

  67. Rajewsky N. microRNA target predictions in animals. Nat Genet 2006; 38( Suppl): S8–S13

    Article  PubMed  CAS  Google Scholar 

  68. John B, Enright AJ, Aravin A, Tuschl T, Sander C, Marks DS. Human MicroRNA targets. PLoS Biol 2004; 2(11): e363

    Article  PubMed  Google Scholar 

  69. Lewis BP, Shih IH, Jones-Rhoades MW, Bartel DP, Burge CB. Prediction of mammalian microRNA targets. Cell 2003; 115(7): 787–798

    Article  PubMed  CAS  Google Scholar 

  70. Krek A, Grün D, Poy MN, Wolf R, Rosenberg L, Epstein EJ, MacMenamin P, da Piedade I, Gunsalus KC, Stoffel M, Rajewsky N. Combinatorial microRNA target predictions. Nat Genet 2005; 37(5): 495–500

    Article  PubMed  CAS  Google Scholar 

  71. Lewis BP, Burge CB, Bartel DP. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 2005; 120(1): 15–20

    Article  PubMed  CAS  Google Scholar 

  72. Miranda KC, Huynh T, Tay Y, Ang YS, Tam WL, Thomson AM, Lim B, Rigoutsos I. A pattern-based method for the identification of MicroRNA binding sites and their corresponding heteroduplexes. Cell 2006; 126(6): 1203–1217

    Article  PubMed  CAS  Google Scholar 

  73. Lim LP, Lau NC, Garrett-Engele P, Grimson A, Schelter JM, Castle J, Bartel DP, Linsley PS, Johnson JM. Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs. Nature 2005; 433(7027): 769–773

    Article  PubMed  CAS  Google Scholar 

  74. Wang X, Wang X. Systematic identification of microRNA functions by combining target prediction and expression profiling. Nucleic Acids Res 2006; 34(5): 1646–1652

    Article  PubMed  CAS  Google Scholar 

  75. Baek D, Villén J, Shin C, Camargo FD, Gygi SP, Bartel DP. The impact of microRNAs on protein output. Nature 2008; 455(7209): 64–71

    Article  PubMed  CAS  Google Scholar 

  76. Kiriakidou M, Nelson PT, Kouranov A, Fitziev P, Bouyioukos C, Mourelatos Z, Hatzigeorgiou A. A combined computational-experimental approach predicts human microRNA targets. Genes Dev 2004; 18(10): 1165–1178

    Article  PubMed  CAS  Google Scholar 

  77. Chi SW, Zang JB, Mele A, Darnell RB. Argonaute HITS-CLIP decodes microRNA-mRNA interaction maps. Nature 2009; 460(7254): 479–486

    PubMed  CAS  Google Scholar 

  78. Stenvang J, Kauppinen S. MicroRNAs as targets for antisense-based therapeutics. Expert Opin Biol Ther 2008; 8(1): 59–81

    Article  PubMed  CAS  Google Scholar 

  79. Ebert MS, Neilson JR, Sharp PA. MicroRNA sponges: competitive inhibitors of small RNAs in mammalian cells. Nat Methods 2007; 4(9): 721–726

    Article  PubMed  CAS  Google Scholar 

  80. Liu Z, Sall A, Yang D. MicroRNA: An emerging therapeutic target and intervention tool. Int J Mol Sci 2008; 9(6): 978–999

    Article  PubMed  CAS  Google Scholar 

  81. Krützfeldt J, Rajewsky N, Braich R, Rajeev KG, Tuschl T, Manoharan M, Stoffel M. Silencing of microRNAs in vivo with ‘antagomirs’. Nature 2005; 438(7068): 685–689

    Article  PubMed  Google Scholar 

  82. Elmén J, Lindow M, Schütz S, Lawrence M, Petri A, Obad S, Lindholm M, Hedtjärn M, Hansen HF, Berger U, Gullans S, Kearney P, Sarnow P, Straarup EM, Kauppinen S. LNA-mediated microRNA silencing in non-human primates. Nature 2008; 452(7189): 896–899

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xianghang Luo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, R., Wang, D., Xia, Z. et al. The role of microRNAs in adipocyte differentiation. Front. Med. 7, 223–230 (2013). https://doi.org/10.1007/s11684-013-0252-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11684-013-0252-8

Keywords

Navigation