Skip to main content
Log in

Regulatory factors of mesenchymal stem cell migration into injured tissues and their signal transduction mechanisms

  • Review
  • Published:
Frontiers of Medicine Aims and scope Submit manuscript

Abstract

Adult stem cells hold great promise for wound healing and tissue regeneration. Mesenchymal stem cells (MSCs), for example, have been shown to play a role in tissue repair. Research has shown that endogenous bone marrow MSCs or exogenously delivered MSCs migrate to the sites of injury and participate in the repair process. The precise mechanisms underlying migration of MSCs into the injured tissue are still not fully understood, although multiple signaling pathways and molecules were reported, including both chemoattractive factors and endogenous electric fields at wounds. This review will briefly summarize the regulatory facors and signaling transduction pathways involved in migration of MSCs. A better understanding of the molecular mechanisms involved in the migration of MSCs will help us to develop new stem cell-based therapeutic strategies in regenerative medicine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Friedenstein A J, Chailakhyan R K, Latsinik N V, Panasyuk A F, Keiliss-Borok I V. Stromal cells responsible for transferring the microenvironment of the hemopoietic tissues. Cloning in vitro and retransplantation in vivo. Transplantation, 1974, 17(4): 331–340

    Article  PubMed  CAS  Google Scholar 

  2. Ortiz L A, Dutreil M, Fattman C, Pandey A C, Torres G, Go K, Phinney D G. Interleukin 1 receptor antagonist mediates the antiinflammatory and antifibrotic effect of mesenchymal stem cells during lung injury. Proc Natl Acad Sci USA, 2007, 104(26): 11002–11007

    Article  PubMed  CAS  Google Scholar 

  3. Ohnishi S, Yanagawa B, Tanaka K, Miyahara Y, Obata H, Kataoka M, Kodama M, Ishibashi-Ueda H, Kangawa K, Kitamura S, Nagaya N. Transplantation of mesenchymal stem cells attenuates myocardial injury and dysfunction in a rat model of acute myocarditis. J Mol Cell Cardiol, 2007, 42(1): 88–97

    Article  PubMed  CAS  Google Scholar 

  4. Shake J G, Gruber P J, Baumgartner WA, Senechal G, Meyers J, Redmond J M, Pittenger M F, Martin B J. Mesenchymal stem cell implantation in a swine myocardial infarct model: engraftment and functional effects. Ann Thorac Surg. 2002; 73(6): 1919–1926

    Article  PubMed  Google Scholar 

  5. Zohlnhöfer D, Dibra A, Koppara T, deWaha A, Ripa R S, Kastrup J, Valgimigli M, Schömig A, Kastrati A. Stem cell mobilization by granulocyte colony-stimulating factor for myocardial recovery after acute myocardial infarction: a meta-analysis. J Am Coll Cardiol, 2008, 51(15): 1429–1437

    Article  PubMed  Google Scholar 

  6. Patschan D, Plotkin M, Goligorsky M S. Therapeutic use of stem and endothelial progenitor cells in acute renal injury: ça ira. Curr Opin Pharmacol, 2006, 6(2): 176–183

    Article  PubMed  CAS  Google Scholar 

  7. Liang L, Ma T, Chen W, Hu J, Bai X, Li J, Liang T. Therapeutic potential and related signal pathway of adipose-derived stem cell transplantation for rat liver injury. Hepatol Res, 2009, 39(8): 822–832

    Article  PubMed  CAS  Google Scholar 

  8. Németh K, Leelahavanichkul A, Yuen P S, Mayer B, Parmelee A, Doi K, Robey P G, Leelahavanichkul K, Koller B H, Brown JM, Hu X, Jelinek I, Star R A, Mezey E. Bone marrow stromal cells attenuate sepsis via prostaglandin E(2)-dependent reprogramming of host macrophages to increase their interleukin-10 production. Nat Med, 2009, 15(1): 42–49

    Article  PubMed  Google Scholar 

  9. Chapel A, Bertho J M, Bensidhoum M, Fouillard L, Young R G, Frick J, Demarquay C, Cuvelier F, Mathieu E, Trompier F, Dudoignon N, Germain C, Mazurier C, Aigueperse J, Borneman J, Gorin N C, Gourmelon P, Thierry D. Mesenchymal stem cells home to injured tissues when co-infused with hematopoietic cells to treat a radiation-induced multi-organ failure syndrome. J Gene Med, 2003, 5(12): 1028–1038

    Article  PubMed  Google Scholar 

  10. Ortiz L A, Gambelli F, McBride C, Gaupp D, Baddoo M, Kaminski N, Phinney D G. Mesenchymal stem cell engraftment in lung is enhanced in response to bleomycin exposure and ameliorates its fibrotic effects. Proc Natl Acad Sci USA, 2003, 100(14): 8407–8411

    Article  PubMed  CAS  Google Scholar 

  11. Moser B, Willimann K. Chemokines: role in inflammation and immune surveillance. Ann Rheum Dis, 2004, 63(Suppl 2): ii84–ii89

    Article  PubMed  CAS  Google Scholar 

  12. Li Y, Yu X, Lin S, Li X, Zhang S, Song Y H. Insulin-like growth factor 1 enhances the migratory capacity of mesenchymal stem cells. Biochem Biophys Res Commun, 2007, 356(3): 780–784

    Article  PubMed  CAS  Google Scholar 

  13. Ji J F, He B P, Dheen S T, Tay S S. Interactions of chemokines and chemokine receptors mediate the migration of mesenchymal stem cells to the impaired site in the brain after hypoglossal nerve injury. Stem Cells, 2004, 22(3): 415–427

    Article  PubMed  CAS  Google Scholar 

  14. Ryu C H, Park S A, Kim S M, Lim J Y, Jeong C H, Jun J A, Oh J H, Park S H, Oh W I, Jeun S S. Migration of human umbilical cord blood mesenchymal stem cells mediated by stromal cell-derived factor-1/CXCR4 axis via Akt, ERK, and p38 signal transduction pathways. Biochem Biophys Res Commun, 2010, 398(1): 105–110

    Article  PubMed  CAS  Google Scholar 

  15. Wynn R F, Hart C A, Corradi-Perini C, O’Neill L, Evans C A, Wraith J E, Fairbairn L J, Bellantuono I. A small proportion of mesenchymal stem cells strongly expresses functionally active CXCR4 receptor capable of promoting migration to bone marrow. Blood, 2004, 104(9): 2643–2645

    Article  PubMed  CAS  Google Scholar 

  16. Son B R, Marquez-Curtis L A, Kucia M, Wysoczynski M, Turner A R, Ratajczak J, Ratajczak M Z, Janowska-Wieczorek A. Migration of bone marrow and cord blood mesenchymal stem cells in vitro is regulated by stromal-derived factor-1-CXCR4 and hepatocyte growth factor-c-met axes and involves matrix metalloproteinases. Stem Cells, 2006, 24(5): 1254–1264

    Article  PubMed  CAS  Google Scholar 

  17. Tsai L K, Leng Y, Wang Z, Leeds P, Chuang D M. The mood stabilizers valproic acid and lithium enhance mesenchymal stem cell migration via distinct mechanisms. Neuropsychopharmacology, 2010, 35(11): 2225–2237

    Article  PubMed  CAS  Google Scholar 

  18. Ip J E, Wu Y, Huang J, Zhang L, Pratt R E, Dzau V J. Mesenchymal stem cells use integrin beta1 not CXC chemokine receptor 4 for myocardial migration and engraftment. Mol Biol Cell, 2007, 18(8): 2873–2882

    Article  PubMed  CAS  Google Scholar 

  19. Sordi V, Malosio M L, Marchesi F, Mercalli A, Melzi R, Giordano T, Belmonte N, Ferrari G, Leone B E, Bertuzzi F, Zerbini G, Allavena P, Bonifacio E, Piemonti L. Bone marrow mesenchymal stem cells express a restricted set of functionally active chemokine receptors capable of promoting migration to pancreatic islets. Blood, 2005, 106(2): 419–427

    Article  PubMed  CAS  Google Scholar 

  20. Phinney D G, Prockop D J. Concise review: mesenchymal stem/multipotent stromal cells: the state of transdifferentiation and modes of tissue repair—current views. Stem Cells, 2007, 25(11): 2896–2902

    Article  PubMed  Google Scholar 

  21. Rüster B, Göttig S, Ludwig R J, Bistrian R, Müller S, Seifried E, Gille J, Henschler R. Mesenchymal stem cells display coordinated rolling and adhesion behavior on endothelial cells. Blood, 2006, 108(12): 3938–3944

    Article  PubMed  Google Scholar 

  22. Sackstein R, Merzaban J S, Cain DW, Dagia NM, Spencer J A, Lin C P, Wohlgemuth R. Ex vivo glycan engineering of CD44 programs human multipotent mesenchymal stromal cell trafficking to bone. Nat Med, 2008, 14(2): 181–187

    Article  PubMed  CAS  Google Scholar 

  23. Jeon E S, Song H Y, Kim MR, Moon H J, Bae Y C, Jung J S, Kim J H. Sphingosylphosphorylcholine induces proliferation of human adipose tissue-derived mesenchymal stem cells via activation of JNK. J Lipid Res, 2006, 47(3): 653–664

    Article  PubMed  CAS  Google Scholar 

  24. Song H Y, Lee MJ, Kim MY, Kim K H, Lee I H, Shin S H, Lee J S, Kim J H. Lysophosphatidic acid mediates migration of human mesenchymal stem cells stimulated by synovial fluid of patients with rheumatoid arthritis. Biochim Biophys Acta, 2010, 1801(1): 23–30

    PubMed  CAS  Google Scholar 

  25. Song H Y, Lee MJ, Kim MY, Kim K H, Lee I H, Shin S H, Lee J S, Kim J H. Lysophosphatidic acid mediates migration of human mesenchymal stem cells stimulated by synovial fluid of patients with rheumatoid arthritis. Biochim Biophys Acta, 2010, 1801(1): 23–30

    PubMed  CAS  Google Scholar 

  26. Jaganathan B G, Ruester B, Dressel L, Stein S, Grez M, Seifried E, Henschler R. Rho inhibition induces migration of mesenchymal stromal cells. Stem Cells, 2007, 25(8): 1966–1974

    Article  PubMed  CAS  Google Scholar 

  27. Fu X, Han B, Cai S, Lei Y, Sun T, Sheng Z. Migration of bone marrow-derived mesenchymal stem cells induced by tumor necrosis factor-alpha and its possible role in wound healing. Wound Repair Regen, 2009, 17(2): 185–191

    Article  PubMed  Google Scholar 

  28. Hemeda H, Jakob M, Ludwig A K, Giebel B, Lang S, Brandau S. Interferon-gamma and tumor necrosis factor-alpha differentially affect cytokine expression and migration properties of mesenchymal stem cells. Stem Cells Dev, 2010, 19(5): 693–706

    Article  PubMed  CAS  Google Scholar 

  29. Zhang A, Wang Y, Ye Z, Xie H, Zhou L, Zheng S. Mechanism of TNF-α-induced migration and hepatocyte growth factor production in human mesenchymal stem cells. J Cell Biochem, 2010, 111(2): 469–475

    Article  PubMed  CAS  Google Scholar 

  30. Fischer-Valuck B W, Barrilleaux B L, Phinney D G, Russell K C, Prockop D J, O’Connor K C. Migratory response of mesenchymal stem cells to macrophage migration inhibitory factor and its antagonist as a function of colony-forming efficiency. Biotechnol Lett, 2010, 32(1): 19–27

    Article  PubMed  CAS  Google Scholar 

  31. Meng E, Guo Z, Wang H, Jin J, Wang J, Wang H, Wu C, Wang L. High mobility group box 1 protein inhibits the proliferation of human mesenchymal stem cells and promotes their migration and differentiation along osteoblastic pathway. Stem Cells Dev, 2008, 17(4): 805–813

    Article  PubMed  CAS  Google Scholar 

  32. Wang L, Li Y, Chen X, Chen J, Gautam S C, Xu Y, Chopp M. MCP-1, MIP-1, IL-8 and ischemic cerebral tissue enhance human bone marrow stromal cell migration in interface culture. Hematology, 2002, 7(2): 113–117

    Article  PubMed  CAS  Google Scholar 

  33. Wang L, Li Y, Chen J, Gautam S C, Zhang Z, Lu M, Chopp M. Ischemic cerebral tissue and MCP-1 enhance rat bone marrow stromal cell migration in interface culture. Exp Hematol, 2002, 30(7): 831–836

    Article  PubMed  CAS  Google Scholar 

  34. Dwyer R M, Potter-Beirne S M, Harrington K A, Lowery A J, Hennessy E, Murphy J M, Barry F P, O’Brien T, Kerin M J. Monocyte chemotactic protein-1 secreted by primary breast tumors stimulates migration of mesenchymal stem cells. Clin Cancer Res, 2007, 13(17): 5020–5027

    Article  PubMed  CAS  Google Scholar 

  35. Xu F, Shi J, Yu B, Ni W, Wu X, Gu Z. Chemokines mediate mesenchymal stem cell migration toward gliomas in vitro. Oncol Rep, 2010, 23(6): 1561–1567

    PubMed  CAS  Google Scholar 

  36. Picinich S C, Glod J W, Banerjee D. Protein kinase C zeta regulates interleukin-8-mediated stromal-derived factor-1 expression and migration of human mesenchymal stromal cells. Exp Cell Res, 2010, 316(4): 593–602

    Article  PubMed  CAS  Google Scholar 

  37. Ponte A L, Marais E, Gallay N, Langonné A, Delorme B, Hérault O, Charbord P, Domenech J. The in vitro migration capacity of human bone marrow mesenchymal stem cells: comparison of chemokine and growth factor chemotactic activities. Stem Cells, 2007, 25(7): 1737–1745

    Article  PubMed  CAS  Google Scholar 

  38. Forte G, Minieri M, Cossa P, Antenucci D, Sala M, Gnocchi V, Fiaccavento R, Carotenuto F, De Vito P, Baldini P M, Prat M, Di Nardo P. Hepatocyte growth factor effects on mesenchymal stem cells: proliferation, migration, and differentiation. Stem Cells, 2006, 24(1): 23–33

    Article  PubMed  CAS  Google Scholar 

  39. Fiedler J, Röderer G, Günther K P, Brenner R E. BMP-2, BMP-4, and PDGF-bb stimulate chemotactic migration of primary human mesenchymal progenitor cells. J Cell Biochem, 2002, 87(3): 305–312

    Article  PubMed  CAS  Google Scholar 

  40. Fiedler J, Brill C, Blum W F, Brenner R E. IGF-I and IGF-II stimulate directed cell migration of bone-marrow-derived human mesenchymal progenitor cells. Biochem Biophys Res Commun, 2006, 345(3): 1177–1183

    Article  PubMed  CAS  Google Scholar 

  41. Tamama K, Fan V H, Griffith L G, Blair H C, Wells A. Epidermal growth factor as a candidate for ex vivo expansion of bone marrowderived mesenchymal stem cells. Stem Cells, 2006, 24(3): 686–695

    Article  PubMed  CAS  Google Scholar 

  42. Kollet O, Shivtiel S, Chen Y Q, Suriawinata J, Thung S N, Dabeva M D, Kahn J, Spiegel A, Dar A, Samira S, Goichberg P, Kalinkovich A, Arenzana-Seisdedos F, Nagler A, Hardan I, Revel M, Shafritz D A, Lapidot T. HGF, SDF-1, and MMP-9 are involved in stress-induced human CD34 + stem cell recruitment to the liver. J Clin Invest, 2003, 112(2): 160–169

    PubMed  CAS  Google Scholar 

  43. Jankowski K, Kucia M, Wysoczynski M, Reca R, Zhao D, Trzyna E, Trent J, Peiper S, Zembala M, Ratajczak J, Houghton P, Janowska-Wieczorek A, Ratajczak M Z. Both hepatocyte growth factor (HGF) and stromal-derived factor-1 regulate the metastatic behavior of human rhabdomyosarcoma cells, but only HGF enhances their resistance to radiochemotherapy. Cancer Res, 2003, 63(22): 7926–7935

    PubMed  CAS  Google Scholar 

  44. Demetri G D, Griffin J D. Granulocyte colony-stimulating factor and its receptor. Blood, 1991, 78(11): 2791–2808

    PubMed  CAS  Google Scholar 

  45. Yanqing Z, Yu-Min L, Jian Q, Bao-Guo X, Chuan-Zhen L. Fibronectin and neuroprotective effect of granulocyte colonystimulating factor in focal cerebral ischemia. Brain Res, 2006, 1098(1): 161–169

    Article  PubMed  Google Scholar 

  46. Shyu W C, Lin S Z, Yang H I, Tzeng Y S, Pang C Y, Yen P S, Li H. Functional recovery of stroke rats induced by granulocyte colonystimulating factor-stimulated stem cells. Circulation, 2004, 110(13): 1847–1854

    Article  PubMed  CAS  Google Scholar 

  47. Orlic D, Kajstura J, Chimenti S, Limana F, Jakoniuk I, Quaini F, Nadal-Ginard B, Bodine D M, Leri A, Anversa P. Mobilized bone marrow cells repair the infarcted heart, improving function and survival. Proc Natl Acad Sci USA, 2001, 98(18): 10344–10349

    Article  PubMed  CAS  Google Scholar 

  48. Watari K, Asano S, Shirafuji N, Kodo H, Ozawa K, Takaku F, Kamachi S. Serum granulocyte colony-stimulating factor levels in healthy volunteers and patients with various disorders as estimated by enzyme immunoassay. Blood, 1989, 73(1): 117–122

    PubMed  CAS  Google Scholar 

  49. Zhao M, Song B, Pu J, Wada T, Reid B, Tai G, Wang F, Guo A, Walczysko P, Gu Y, Sasaki T, Suzuki A, Forrester J V, Bourne H R, Devreotes P N, McCaig C D, Penninger J M. Electrical signals control wound healing through phosphatidylinositol-3-OH kinasegamma and PTEN. Nature, 2006, 442(7101): 457–460

    Article  PubMed  CAS  Google Scholar 

  50. Zhao M. Electrical fields in wound healing-An overriding signal that directs cell migration. Semin Cell Dev Biol, 2009, 20(6): 674–682

    Article  PubMed  CAS  Google Scholar 

  51. Nuccitelli R. A role for endogenous electric fields in wound healing. Curr Top Dev Biol, 2003, 58: 1–26

    Article  PubMed  Google Scholar 

  52. Reid B, Song B, McCaig C D, Zhao M. Wound healing in rat cornea: the role of electric currents. FASEB J, 2005, 19(3): 379–386

    Article  PubMed  CAS  Google Scholar 

  53. Song B, Zhao M, Forrester J V, McCaig C D. Electrical cues regulate the orientation and frequency of cell division and the rate of wound healing in vivo. Proc Natl Acad Sci USA, 2002, 99(21): 13577–13582

    Article  PubMed  CAS  Google Scholar 

  54. Hammerick K E, Longaker M T, Prinz F B. In vitro effects of direct current electric fields on adipose-derived stromal cells. Biochem Biophys Res Commun, 2010, 397(1): 12–17

    Article  PubMed  CAS  Google Scholar 

  55. Sun S, Titushkin I, Cho M. Regulation of mesenchymal stem cell adhesion and orientation in 3D collagen scaffold by electrical stimulus. Bioelectrochemistry, 2006, 69(2): 133–141

    Article  PubMed  CAS  Google Scholar 

  56. Tandon N, Goh B, Marsano A, Chao PH, Montouri-Sorrentino C, Gimble J, Vunjak-Novakovic G. Alignment and elongation of human adipose-derived stem cells in response to direct-current electrical stimulation. Conf Proc IEEE Eng Med Biol Soc. 2009; 2009: 6517–6521.

    PubMed  Google Scholar 

  57. Zhao M. Electrical fields in wound healing-An overriding signal that directs cell migration. Semin Cell Dev Biol, 2009, 20(6): 674–682

    Article  PubMed  CAS  Google Scholar 

  58. Zha Y H, He J F, Mei Y W, Yin T, Mao L. Zinc-finger transcription factor snail accelerates survival, migration and expression of matrix metalloproteinase-2 in human bone mesenchymal stem cells. Cell Biol Int, 2007, 31(10): 1089–1096

    Article  PubMed  CAS  Google Scholar 

  59. Schmidt A, Ladage D, Schinköthe T, Klausmann U, Ulrichs C, Klinz F J, Brixius K, Arnhold S, Desai B, Mehlhorn U, Schwinger R H, Staib P, Addicks K, Bloch W. Basic fibroblast growth factor controls migration in human mesenchymal stem cells. Stem Cells, 2006, 24(7): 1750–1758

    Article  PubMed  CAS  Google Scholar 

  60. Zhao M, Agius-Fernandez A, Forrester J V, McCaig C D. Directed migration of corneal epithelial sheets in physiological electric fields. Invest Ophthalmol Vis Sci, 1996, 37(13): 2548–2558

    PubMed  CAS  Google Scholar 

  61. Farboud B, Nuccitelli R, Schwab I R, Isseroff R R. DC electric fields induce rapid directional migration in cultured human corneal epithelial cells. Exp Eye Res, 2000, 70(5): 667–673

    Article  PubMed  CAS  Google Scholar 

  62. Wang E, Zhao M, Forrester J V, MCCaig C D. Re-orientation and faster, directed migration of lens epithelial cells in a physiological electric field. Exp Eye Res, 2000, 71(1): 91–98

    Article  PubMed  CAS  Google Scholar 

  63. Pu J, McCaig C D, Cao L, Zhao Z, Segall J E, Zhao M. EGF receptor signalling is essential for electric-field-directed migration of breast cancer cells. J Cell Sci, 2007, 120(Pt 19): 3395–3403

    Article  PubMed  CAS  Google Scholar 

  64. Yun D H, Song H Y, Lee M J, Kim M R, Kim M Y, Lee J S, Kim J H. Thromboxane A(2) modulates migration, proliferation, and differentiation of adipose tissue-derived mesenchymal stem cells. Exp Mol Med, 2009, 41(1): 17–24

    Article  PubMed  CAS  Google Scholar 

  65. Li S, Deng Y, Feng J, Ye W. Oxidative preconditioning promotes bone marrow mesenchymal stem cells migration and prevents apoptosis. Cell Biol Int, 2009, 33(3): 411–418

    Article  PubMed  Google Scholar 

  66. Kang Y J, Jeon E S, Song H Y, Woo J S, Jung J S, Kim Y K, Kim J H. Role of c-Jun N-terminal kinase in the PDGF-induced proliferation and migration of human adipose tissue-derived mesenchymal stem cells. J Cell Biochem, 2005, 95(6): 1135–1145

    Article  PubMed  CAS  Google Scholar 

  67. Gu Y, Filippi M D, Cancelas J A, Siefring J E, Williams E P, Jasti A C, Harris C E, Lee AW, Prabhakar R, Atkinson S J, Kwiatkowski D J, Williams D A. Hematopoietic cell regulation by Rac1 and Rac2 guanosine triphosphatases. Science, 2003, 302(5644): 445–449

    Article  PubMed  CAS  Google Scholar 

  68. Lee M J, Jeon E S, Lee J S, Cho M, Suh D S, Chang C L, Kim J H. Lysophosphatidic acid in malignant ascites stimulates migration of human mesenchymal stem cells. J Cell Biochem, 2008, 104(2): 499–510

    Article  PubMed  CAS  Google Scholar 

  69. Pinto D, Clevers H. Wnt, stem cells and cancer in the intestine. Biol Cell, 2005, 97(3): 185–196

    Article  PubMed  CAS  Google Scholar 

  70. Qiang Y W, Walsh K, Yao L, Kedei N, Blumberg P M, Rubin J S, Shaughnessy J Jr, Rudikoff S. Wnts induce migration and invasion of myeloma plasma cells. Blood, 2005, 106(5): 1786–1793

    Article  PubMed  CAS  Google Scholar 

  71. Shang Y C, Wang S H, Xiong F, Zhao C P, Peng F N, Feng S W, Li M S, Li Y, Zhang C. Wnt3a signaling promotes proliferation, myogenic differentiation, and migration of rat bone marrow mesenchymal stem cells. Acta Pharmacol Sin, 2007, 28(11): 1761–1774

    Article  PubMed  CAS  Google Scholar 

  72. Karp J M, Leng Teo G S. Mesenchymal stem cell homing: the devil is in the details. Cell Stem Cell, 2009, 4(3): 206–216

    Article  PubMed  CAS  Google Scholar 

  73. Barrilleaux B L, Fischer-Valuck B W, Gilliam J K, Phinney D G, O’Connor K C. Activation of CD74 inhibits migration of human mesenchymal stem cells. In Vitro Cell Dev Biol Anim, 2010, 46(6): 566–572

    Article  PubMed  CAS  Google Scholar 

  74. De Becker A, Van Hummelen P, Bakkus M, Vande Broek I, De Wever J, De Waele M, Van Riet I. Migration of culture-expanded human mesenchymal stem cells through bone marrow endothelium is regulated by matrix metalloproteinase-2 and tissue inhibitor of metalloproteinase-3. Haematologica, 2007, 92(4): 440–449

    Article  PubMed  Google Scholar 

  75. Rombouts WJ, Ploemacher R E. Primary murine MSC show highly efficient homing to the bone marrow but lose homing ability following culture. Leukemia, 2003, 17(1): 160–170

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianxin Jiang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, L., Jiang, J. Regulatory factors of mesenchymal stem cell migration into injured tissues and their signal transduction mechanisms. Front. Med. 5, 33–39 (2011). https://doi.org/10.1007/s11684-011-0114-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11684-011-0114-1

Keywords

Navigation