Skip to main content
Log in

Toll-like receptors in innate immunity and infectious diseases

  • Review
  • Published:
Frontiers of Medicine in China Aims and scope Submit manuscript

Abstract

The protective ability of host defense system is largely dependent on germ-line encoded pattern-recognition receptors (PRRs). These PRRs respond to a variety of exogenous pathogens or endogenous danger signals, by recognizing some highly conserved structures such as pathogen-associated molecular patterns (PAMPs) and danger/damage associated molecular patterns (DAMPs). The most studied PRRs are Toll-like receptors (TLRs). Activation of TLRs triggers production of inflammatory cytokines and type I interferons (IFNs) via myeloid differentiation primary response gene 88 (MyD88)-dependent or -independent signaling respectively, thereby modulating innate and adaptive immunity, as well as inflammatory responses. This review introduces the classification, structure, and specific ligands of TLRs, and focuses on their signal pathways and biological activities, as well as clinical relevance. These studies of TLRs in the innate immune system have implications for the prevention and treatment of a variety of infectious diseases, including tuberculosis (TB), microbial keratitis, and hepatitis B and C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Medzhitov R, Janeway C Jr. Innate immunity. N Engl J Med, 2000, 343(5): 338–344

    Article  CAS  PubMed  Google Scholar 

  2. Janeway C A Jr, Medzhitov R. Innate immune recognition. Annu Rev Immunol, 2002, 20: 197–216

    Article  CAS  PubMed  Google Scholar 

  3. Medzhitov R, Janeway C A Jr. How does the immune system distinguish self from nonself? Semin Immunol, 2000, 12(3): 185–188, discussion 257–344

    Article  CAS  PubMed  Google Scholar 

  4. Foell D, Wittkowski H, Roth J. Mechanisms of disease: a ‘DAMP’ view of inflammatory arthritis. Nat Clin Pract Rheumatol, 2007, 3(7): 382–390

    Article  CAS  PubMed  Google Scholar 

  5. Fraser I P, Koziel H, Ezekowitz R A. The serum mannose-binding protein and the macrophage mannose receptor are pattern recognition molecules that link innate and adaptive immunity. Semin Immunol, 1998, 10(5): 363–372

    Article  CAS  PubMed  Google Scholar 

  6. Bowdish D M, Gordon S. Conserved domains of the class A scavenger receptors: evolution and function. Immunol Rev, 2009, 227(1): 19–31

    Article  CAS  PubMed  Google Scholar 

  7. Beutler B. Inferences, questions and possibilities in Toll-like receptor signalling. Nature, 2004, 430(6996): 257–263

    Article  CAS  PubMed  Google Scholar 

  8. Bianchi M E. DAMPs, PAMPs and alarmins: all we need to know about danger. J Leukoc Biol, 2007, 81(1): 1–5

    Article  CAS  PubMed  Google Scholar 

  9. Akira S, Takeda K. Toll-like receptor signalling. Nat Rev Immunol, 2004, 4(7): 499–511

    Article  CAS  PubMed  Google Scholar 

  10. Wheeler D S, Chase M A, Senft A P, Poynter S E, Wong H R, Page K. Extracellular Hsp72, an endogenous DAMP, is released by virally infected airway epithelial cells and activates neutrophils via Toll-like receptor (TLR)-4. Respir Res, 2009, 10: 31

    Article  PubMed  Google Scholar 

  11. Halayko A J, Ghavami S. S100A8/A9: a mediator of severe asthma pathogenesis and morbidity? Can J Physiol Pharmacol, 2009, 87(10): 743–755

    Article  CAS  PubMed  Google Scholar 

  12. Jin M S, Lee J O. Structures of the toll-like receptor family and its ligand complexes. Immunity, 2008, 29(2): 182–191

    Article  CAS  PubMed  Google Scholar 

  13. O’Neill L A, Bowie A G. The family of five: TIR-domaincontaining adaptors in Toll-like receptor signalling. Nat Rev Immunol, 2007, 7(5): 353–364

    Article  PubMed  Google Scholar 

  14. Dowling D, Hamilton C M, O’Neill S M. A comparative analysis of cytokine responses, cell surface marker expression and MAPKs in DCs matured with LPS compared with a panel of TLR ligands. Cytokine, 2008, 41(3): 254–262

    Article  CAS  PubMed  Google Scholar 

  15. Lien E, Chow J C, Hawkins L D, McGuinness P D, Miyake K, Espevik T, Gusovsky F, Golenbock D T. A novel synthetic acyclic lipid A-like agonist activates cells via the lipopolysaccharide/tolllike receptor 4 signaling pathway. J Biol Chem, 2001, 276(3): 1873–1880

    Article  CAS  PubMed  Google Scholar 

  16. Wang D, Lou J, Ouyang C, Chen W, Liu Y, Liu X, Cao X, Wang J, Lu L. Ras-related protein Rab10 facilitates TLR4 signaling by promoting replenishment of TLR4 onto the plasma membrane. Proc Natl Acad Sci U S A, 2010, 107(31): 13806–13811

    Article  CAS  PubMed  Google Scholar 

  17. Lang L L, Wang L, Liu L. Exogenous MD-2 Confers Lipopolysaccharide Responsiveness to Human Corneal Epithelial Cells with Intracellular Expression of TLR4 and CD14. Inflammation, 2010 Aug 11. doi: 10:1007/s10753-010-9244-x

  18. Aliprantis A O, Yang R B, Mark M R, Suggett S, Devaux B, Radolf J D, Klimpel G R, Godowski P, Zychlinsky A. Cell activation and apoptosis by bacterial lipoproteins through toll-like receptor-2. Science, 1999, 285(5428): 736–739

    Article  CAS  PubMed  Google Scholar 

  19. Schwandner R, Dziarski R, Wesche H, Rothe M, Kirschning C J. Peptidoglycan- and lipoteichoic acid-induced cell activation is mediated by toll-like receptor 2. J Biol Chem, 1999, 274(25): 17406–17409

    Article  CAS  PubMed  Google Scholar 

  20. Takeda K, Takeuchi O, Akira S. Recognition of lipopeptides by Toll-like receptors. J Endotoxin Res, 2002, 8(6): 459–463

    CAS  PubMed  Google Scholar 

  21. Ozinsky A, Underhill D M, Fontenot J D, Hajjar A M, Smith K D, Wilson C B, Schroeder L, Aderem A. The repertoire for pattern recognition of pathogens by the innate immune system is defined by cooperation between toll-like receptors. Proc Natl Acad Sci U S A, 2000, 97(25): 13766–13771

    Article  CAS  PubMed  Google Scholar 

  22. Nakao Y, Funami K, Kikkawa S, Taniguchi M, Nishiguchi M, Fukumori Y, Seya T, Matsumoto M. Surface-expressed TLR6 participates in the recognition of diacylated lipopeptide and peptidoglycan in human cells. J Immunol, 2005, 174(3): 1566–1573

    CAS  PubMed  Google Scholar 

  23. Henneke P, Morath S, Uematsu S, Weichert S, Pfitzenmaier M, Takeuchi O, Müller A, Poyart C, Akira S, Berner R, Teti G, Geyer A, Hartung T, Trieu-Cuot P, Kasper D L, Golenbock D T. Role of lipoteichoic acid in the phagocyte response to group B streptococcus. J Immunol, 2005, 174(10): 6449–6455

    CAS  PubMed  Google Scholar 

  24. von Aulock S, Morath S, Hareng L, Knapp S, van Kessel K P, van Strijp J A, Hartung T. Lipoteichoic acid from Staphylococcus aureus is a potent stimulus for neutrophil recruitment. Immunobiology, 2003, 208(4): 413–422

    Article  Google Scholar 

  25. Shimizu T, Kida Y, Kuwano K. A triacylated lipoprotein from Mycoplasma genitalium activates NF-kappaB through Toll-like receptor 1 (TLR1) and TLR2. Infect Immun, 2008, 76(8): 3672–3678

    Article  CAS  PubMed  Google Scholar 

  26. Shimizu T, Kida Y, Kuwano K. Triacylated lipoproteins derived from Mycoplasma pneumoniae activate nuclear factor-kappaB through toll-like receptors 1 and 2. Immunology, 2007, 121(4): 473–483

    Article  CAS  PubMed  Google Scholar 

  27. Hayashi F, Smith K D, Ozinsky A, Hawn T R, Yi E C, Goodlett D R, Eng J K, Akira S, Underhill D M, Aderem A. The innate immune response to bacterial flagellin is mediated by Toll-like receptor 5. Nature, 2001, 410(6832): 1099–1103

    Article  CAS  PubMed  Google Scholar 

  28. Yarovinsky F, Zhang D, Andersen J F, Bannenberg G L, Serhan C N, Hayden M S, Hieny S, Sutterwala F S, Flavell R A, Ghosh S, Sher A. TLR11 activation of dendritic cells by a protozoan profilinlike protein. Science, 2005, 308(5728): 1626–1629

    Article  CAS  PubMed  Google Scholar 

  29. Zhang D, Zhang G, Hayden MS, Greenblatt MB, Bussey C, Flavell R A, Ghosh S. A toll-like receptor that prevents infection by uropathogenic bacteria. Science, 2004, 303(5663): 1522–1526

    Article  CAS  PubMed  Google Scholar 

  30. Liu L, Botos I, Wang Y, Leonard J N, Shiloach J, Segal DM, Davies D R. Structural basis of toll-like receptor 3 signaling with doublestranded RNA. Science, 2008, 320(5874): 379–381

    Article  CAS  PubMed  Google Scholar 

  31. Hemmi H, Takeuchi O, Kawai T, Kaisho T, Sato S, Sanjo H, Matsumoto M, Hoshino K, Wagner H, Takeda K, Akira S A. A Tolllike receptor recognizes bacterial DNA. Nature, 2000, 408(6813): 740–745

    Article  CAS  PubMed  Google Scholar 

  32. Gantier M P, Tong S, Behlke M A, Xu D, Phipps S, Foster P S, Williams B R. TLR7 is involved in sequence-specific sensing of single-stranded RNAs in human macrophages. J Immunol, 2008, 180(4): 2117–2124

    CAS  PubMed  Google Scholar 

  33. Hammadi A, Billard C, Faussat AM, Kolb J P. Stimulation of iNOS expression and apoptosis resistance in B-cell chronic lymphocytic leukemia (B-CLL) cells through engagement of Toll-like receptor 7 (TLR-7) and NF-kappaB activation. Nitric Oxide, 2008, 19(2): 138–145

    Article  CAS  PubMed  Google Scholar 

  34. Pivarcsi A, Nagy I, Koreck A, Kis K, Kenderessy-Szabo A, Szell M, Dobozy A, Kemeny L. Microbial compounds induce the expression of pro-inflammatory cytokines, chemokines and human betadefensin-2 in vaginal epithelial cells. Microbes Infect, 2005, 7(9–10): 1117–1127

    Article  CAS  PubMed  Google Scholar 

  35. Becker M N, Diamond G, Verghese M W, Randell S H. CD14-dependent lipopolysaccharide-induced beta-defensin-2 expression in human tracheobronchial epithelium. J Biol Chem, 2000, 275(38): 29731–29736

    Article  CAS  PubMed  Google Scholar 

  36. Alter G, Suscovich T J, Teigen N, Meier A, Streeck H, Brander C, Altfeld M. Single-stranded RNA derived from HIV-1 serves as a potent activator of NK cells. J Immunol, 2007, 178(12): 7658–7666

    CAS  PubMed  Google Scholar 

  37. Wang J, Shao Y, Bennett T A, Shankar R A, Wightman P D, Reddy L G. The functional effects of physical interactions among Toll-like receptors 7, 8, and 9. J Biol Chem, 2006, 281(49): 37427–37434

    Article  CAS  PubMed  Google Scholar 

  38. Yarovinsky F, Sher A. Toll-like receptor recognition of Toxoplasma gondii. Int J Parasitol, 2006, 36(3): 255–259

    Article  CAS  PubMed  Google Scholar 

  39. Hasan U, Chaffois C, Gaillard C, Saulnier V, Merck E, Tancredi S, Guiet C, Brière F, Vlach J, Lebecque S, Trinchieri G, Bates E E. Human TLR10 is a functional receptor, expressed by B cells and plasmacytoid dendritic cells, which activates gene transcription through MyD88. J Immunol, 2005, 174(5): 2942–2950

    CAS  PubMed  Google Scholar 

  40. Guan Y, Ranoa D R, Jiang S, Mutha S K, Li X, Baudry J, Tapping R I. Human TLRs 10 and 1 share common mechanisms of innate immune sensing but not signaling. J Immunol, 2010, 184(9): 5094–5103

    Article  CAS  PubMed  Google Scholar 

  41. Schnare M, Barton G M, Holt A C, Takeda K, Akira S, Medzhitov R. Toll-like receptors control activation of adaptive immune responses. Nat Immunol, 2001, 2(10): 947–950

    Article  CAS  PubMed  Google Scholar 

  42. Vora P, Youdim A, Thomas L S, Fukata M, Tesfay S Y, Lukasek K, Michelsen K S, Wada A, Hirayama T, Arditi M, Abreu M T. Betadefensin-2 expression is regulated by TLR signaling in intestinal epithelial cells. J Immunol, 2004, 173(9): 5398–5405

    CAS  PubMed  Google Scholar 

  43. Wu M, McClellan S A, Barrett R P, Hazlett L D. Beta-defensin-2 promotes resistance against infection with P. aeruginosa. J Immunol, 2009, 182(3): 1609–1616

    CAS  Google Scholar 

  44. Wu M, McClellan S A, Barrett R P, Zhang Y, Hazlett L D. Betadefensins 2 and 3 together promote resistance to Pseudomonas aeruginosa keratitis. J Immunol, 2009, 183(12): 8054–8060

    Article  CAS  PubMed  Google Scholar 

  45. Chen X M, O’Hara S P, Nelson J B, Splinter P L, Small A J, Tietz P S, Limper A H, LaRusso N F. Multiple TLRs are expressed in human cholangiocytes and mediate host epithelial defense responses to Cryptosporidium parvum via activation of NF-kappaB. J Immunol, 2005, 175(11): 7447–7456

    CAS  PubMed  Google Scholar 

  46. Kumar A, Yin J, Zhang J, Yu F S. Modulation of corneal epithelial innate immune response to pseudomonas infection by flagellin pretreatment. Invest Ophthalmol Vis Sci, 2007, 48(10): 4664–4670

    Article  PubMed  Google Scholar 

  47. Funderburg N, Lederman M M, Feng Z, Drage M G, Jadlowsky J, Harding C V, Weinberg A, Sieg S F. Human-defensin-3 activates professional antigen-presenting cells via Toll-like receptors 1 and 2. Proc Natl Acad Sci U S A, 2007, 104(47): 18631–18635

    Article  CAS  PubMed  Google Scholar 

  48. Biragyn A, Ruffini P A, Leifer C A, Klyushnenkova E, Shakhov A, Chertov O, Shirakawa A K, Farber J M, Segal D M, Oppenheim J J, Kwak L W. Toll-like receptor 4-dependent activation of dendritic cells by beta-defensin 2. Science, 2002, 298(5595): 1025–1029

    Article  CAS  PubMed  Google Scholar 

  49. Davila S, Hibberd M L, Hari Dass R, Wong H E, Sahiratmadja E, Bonnard C, Alisjahbana B, Szeszko J S, Balabanova Y, Drobniewski F, van Crevel R, van de Vosse E, Nejentsev S, Ottenhoff T H, Seielstad M. Genetic association and expression studies indicate a role of toll-like receptor 8 in pulmonary tuberculosis. PLoS Genet, 2008, 4(10): e1000218

    Article  PubMed  Google Scholar 

  50. Ma X, Liu Y, Gowen B B, Graviss E A, Clark A G, Musser J M. Full-exon resequencing reveals toll-like receptor variants contribute to human susceptibility to tuberculosis disease. PLoS One, 2007, 2(12): e1318

    Article  PubMed  Google Scholar 

  51. Velez D R, Wejse C, Stryjewski M E, Abbate E, Hulme W F, Myers J L, Estevan R, Patillo S G, Olesen R, Tacconelli A, Sirugo G, Gilbert J R, Hamilton C D, Scott WK. Variants in toll-like receptors 2 and 9 influence susceptibility to pulmonary tuberculosis in Caucasians, African-Americans, and West Africans. Hum Genet, 2010, 127(1): 65–73

    Article  CAS  PubMed  Google Scholar 

  52. Abel B, Thieblemont N, Quesniaux V J, Brown N, Mpagi J, Miyake K, Bihl F, Ryffel B. Toll-like receptor 4 expression is required to control chronic Mycobacterium tuberculosis infection in mice. J Immunol, 2002, 169(6): 3155–3162

    CAS  PubMed  Google Scholar 

  53. Yang C S, Shin DM, Lee HM, Son JW, Lee S J, Akira S, Gougerot-Pocidalo M A, El-Benna J, Ichijo H, Jo E K. ASK1-p38 MAPKp47phox activation is essential for inflammatory responses during tuberculosis via TLR2-ROS signalling. Cell Microbiol, 2008, 10(3): 741–754

    Article  CAS  PubMed  Google Scholar 

  54. Castiblanco J, Varela D C, Castaño-Rodríguez N, Rojas-Villarraga A, Hincapié M E, Anaya J M. TIRAP (MAL) S180L polymorphism is a common protective factor against developing tuberculosis and systemic lupus erythematosus. Infect Genet Evol, 2008, 8(5): 541–544

    Article  CAS  PubMed  Google Scholar 

  55. Dissanayeke S R, Levin S, Pienaar S, Wood K, Eley B, Beatty D, Henderson H, Anderson S, Levin M. Polymorphic variation in TIRAP is not associated with susceptibility to childhood TB but may determine susceptibility to TBM in some ethnic groups. PLoS One, 2009, 4(8): e6698

    Article  PubMed  Google Scholar 

  56. Doherty T M, Arditi M T B. TB, or not TB: that is the question — does TLR signaling hold the answer? J Clin Invest, 2004, 114(12): 1699–1703

    CAS  PubMed  Google Scholar 

  57. Hazlett L D. Corneal response to Pseudomonas aeruginosa infection. Prog Retin Eye Res, 2004, 23(1): 1–30

    Article  CAS  PubMed  Google Scholar 

  58. Jin X, Lin Z, Xie X. The delayed response of Toll-like receptors may relate to Pseudomonas aeruginosa keratitis exacerbating rapidly at the early stages of infection. Eur J Clin Microbiol Infect Dis, 2010, 29(2): 231–238

    Article  CAS  PubMed  Google Scholar 

  59. Gao N, Kumar A, Jyot J, Yu F S. Flagellin-induced corneal antimicrobial peptide production and wound repair involve a novel NF-kappaB-independent and EGFR-dependent pathway. PLoS One, 2010, 5(2): e9351

    Article  PubMed  Google Scholar 

  60. Hazlett L D, McClellan S, Kwon B, Barrett R. Increased severity of Pseudomonas aeruginosa corneal infection in strains of mice designated as Th1 versus Th2 responsive. Invest Ophthalmol Vis Sci, 2000, 41(3): 805–810

    CAS  PubMed  Google Scholar 

  61. Huang X, Barrett R P, McClellan S A, Hazlett L D. Silencing Tolllike receptor-9 in Pseudomonas aeruginosa keratitis. Invest Ophthalmol Vis Sci, 2005, 46(11): 4209–4216

    Article  PubMed  Google Scholar 

  62. Huang X, Du W, McClellan S A, Barrett R P, Hazlett L D. TLR4 is required for host resistance in Pseudomonas aeruginosa keratitis. Invest Ophthalmol Vis Sci, 2006, 47(11): 4910–4916

    Article  PubMed  Google Scholar 

  63. Huang X, Hazlett L D, Du W, Barrett R P. SIGIRR promotes resistance against Pseudomonas aeruginosa keratitis by downregulating type-1 immunity and IL-1R1 and TLR4 signaling. J Immunol, 2006, 177(1): 548–556

    CAS  PubMed  Google Scholar 

  64. Huang X, Du W, Barrett R P, Hazlett L D. ST2 is essential for Th2 responsiveness and resistance to pseudomonas aeruginosa keratitis. Invest Ophthalmol Vis Sci, 2007, 48(10): 4626–4633

    Article  PubMed  Google Scholar 

  65. Lok A S, McMahon B J, 0. Chronic hepatitis B. Hepatology, 2001, 34(6): 1225–1241

    Article  CAS  PubMed  Google Scholar 

  66. Rantala M, van de Laar M J. Surveillance and epidemiology of hepatitis B and C in Europe-a review. Euro Surveill, 2008, 13(21): 13

    Google Scholar 

  67. Brown R A, Gralewski J H, Eid A J, Knoll B M, Finberg R W, Razonable R R. R753Q single-nucleotide polymorphism impairs toll-like receptor 2 recognition of hepatitis C virus core and nonstructural 3 proteins. Transplantation, 2010, 89(7): 811–815

    Article  CAS  PubMed  Google Scholar 

  68. Li Y, Chang M, Abar O, Garcia V, Rowland C, Catanese J, Ross D, Broder S, Shiffman M, Cheung R, Wright T, Friedman S L, Sninsky J. Multiple variants in toll-like receptor 4 gene modulate risk of liver fibrosis in Caucasians with chronic hepatitis C infection. J Hepatol, 2009, 51(4): 750–757

    Article  CAS  PubMed  Google Scholar 

  69. Askar E, Bregadze R, Mertens J, Schweyer S, Rosenberger A, Ramadori G, Mihm S. TLR3 gene polymorphisms and liver disease manifestations in chronic hepatitis C. J Med Virol, 2009, 81(7): 1204–1211

    Article  CAS  PubMed  Google Scholar 

  70. Schott E, Witt H, Neumann K, Taube S, Oh D Y, Schreier E, Vierich S, Puhl G, Bergk A, Halangk J, Weich V, Wiedenmann B, Berg T A. A Toll-like receptor 7 single nucleotide polymorphism protects from advanced inflammation and fibrosis in male patients with chronic HCV-infection. J Hepatol, 2007, 47(2): 203–211

    Article  CAS  PubMed  Google Scholar 

  71. Zhou J, Huang Y, Tian D, Xu D, Chen M, Wu H. Expression of tolllike receptor 9 in peripheral blood mononuclear cells from patients with different hepatitis B and C viral loads. J Huazhong Univ Sci Technolog Med Sci, 2009, 29(3): 313–317

    Article  CAS  PubMed  Google Scholar 

  72. Wang J P, Zhang Y, Wei X, Li J, Nan X P, Yu H T, Li Y, Wang P Z, Bai X F. Circulating Toll-like receptor (TLR) 2, TLR4, and regulatory T cells in patients with chronic hepatitis C. APMIS, 2010, 118(4): 261–270

    Article  CAS  PubMed  Google Scholar 

  73. Lester R T, Yao X D, Ball T B, McKinnon L R, Kaul R, Wachihi C, Jaoko W, Plummer F A, Rosenthal K L. Toll-like receptor expression and responsiveness are increased in viraemic HIV-1 infection. AIDS, 2008, 22(6): 685–694

    Article  CAS  PubMed  Google Scholar 

  74. Ahmed N, Hayashi T, Hasegawa A, Furukawa H, Okamura N, Chida T, Masuda T, Kannagi M. Suppression of human immunodeficiency virus type-1 (HIV-1) replication in macrophages by commensal bacteria preferentially stimulating toll-like receptor 4. J Gen Virol, 2010, 91(Pt 11): 2804–2813

    Article  CAS  PubMed  Google Scholar 

  75. Pine S O, McElrath M J, Bochud P Y. Polymorphisms in toll-like receptor 4 and toll-like receptor 9 influence viral load in a seroincident cohort of HIV-1-infected individuals. AIDS, 2009, 23(18): 2387–2395

    Article  CAS  PubMed  Google Scholar 

  76. Báfica A, Scanga C A, Schito M, Chaussabel D, Sher A. Influence of coinfecting pathogens on HIV expression: evidence for a role of Toll-like receptors. J Immunol, 2004, 172(12): 7229–7234

    Google Scholar 

  77. Bochud P Y, Hersberger M, Taffé P, Bochud M, Stein C M, Rodrigues S D, Calandra T, Francioli P, Telenti A, Speck R F, Aderem A, 0. Polymorphisms in Toll-like receptor 9 influence the clinical course of HIV-1 infection. AIDS, 2007, 21(4): 441–446

    Article  CAS  PubMed  Google Scholar 

  78. Soriano-Sarabia N, Vallejo A, Ramírez-Lorca R, Rodríguez Mdel M, Salinas A, Pulido I, Sáez M E, Leal M. Influence of the Toll-like receptor 9 1635A/G polymorphism on the CD4 count, HIV viral load, and clinical progression. J Acquir Immune Defic Syndr, 2008, 49(2): 128–135

    Article  CAS  PubMed  Google Scholar 

  79. Guillot L, Le Goffic R, Bloch S, Escriou N, Akira S, Chignard M, Si-Tahar M. Involvement of toll-like receptor 3 in the immune response of lung epithelial cells to double-stranded RNA and influenza A virus. J Biol Chem, 2005, 280(7): 5571–5580

    Article  CAS  PubMed  Google Scholar 

  80. Marshall-Clarke S, Tasker L, Buchatska O, Downes J, Pennock J, Wharton S, Borrow P, Wiseman D Z. Influenza H2 haemagglutinin activates B cells via a MyD88-dependent pathway. Eur J Immunol, 2006, 36(1): 95–106

    Article  CAS  PubMed  Google Scholar 

  81. Wang J P, Bowen G N, Padden C, Cerny A, Finberg R W, Newburger P E, Kurt-Jones E A. Toll-like receptor-mediated activation of neutrophils by influenza A virus. Blood, 2008, 112(5): 2028–2034

    Article  CAS  PubMed  Google Scholar 

  82. Pierik M, Joossens S, Van Steen K, Van Schuerbeek N, Vlietinck R, Rutgeerts P, Vermeire S. Toll-like receptor-1, -2, and-6 polymorphisms influence disease extension in inflammatory bowel diseases. Inflamm Bowel Dis, 2006, 12(1): 1–8

    Article  PubMed  Google Scholar 

  83. Török H P, Glas J, Endres I, Tonenchi L, Teshome M Y, Wetzke M, Klein W, Lohse P, Ochsenkühn T, Folwaczny M, Göke B, Folwaczny C, Müller-Myhsok B, Brand S. Epistasis between Tolllike receptor-9 polymorphisms and variants in NOD2 and IL23R modulates susceptibility to Crohn’s disease. Am J Gastroenterol, 2009, 104(7): 1723–1733

    Article  PubMed  Google Scholar 

  84. Franchimont D, Vermeire S, El Housni H, Pierik M, Van Steen K, Gustot T, Quertinmont E, Abramowicz M, Van Gossum A, Devière J, Rutgeerts P. Deficient host-bacteria interactions in inflammatory bowel disease? The toll-like receptor (TLR)-4 Asp299gly polymorphism is associated with Crohn’s disease and ulcerative colitis. Gut, 2004, 53(7): 987–992

    Article  CAS  PubMed  Google Scholar 

  85. Gewirtz A T, Vijay-Kumar M, Brant S R, Duerr R H, Nicolae D L, Cho J H. Dominant-negative TLR5 polymorphism reduces adaptive immune response to flagellin and negatively associates with Crohn’s disease. Am J Physiol Gastrointest Liver Physiol, 2006, 290(6): G1157–G1163

    Article  CAS  PubMed  Google Scholar 

  86. Leoratti F M, Farias L, Alves F P, Suarez-Mútis M C, Coura J R, Kalil J, Camargo E P, Moraes S L, Ramasawmy R. Variants in the toll-like receptor signaling pathway and clinical outcomes of malaria. J Infect Dis, 2008, 198(5): 772–780

    Article  CAS  PubMed  Google Scholar 

  87. Hamann L, Bedu-Addo G, Eggelte T A, Schumann R R, Mockenhaupt F P. The toll-like receptor 1 variant S248N influences placental malaria. Infect Genet Evol, 2010, 10(6): 785–789

    Article  CAS  PubMed  Google Scholar 

  88. Basu M, Maji A K, Chakraborty A, Banerjee R, Mullick S, Saha P, Das S, Kanjilal S D, Sengupta S. Genetic association of Toll-likereceptor 4 and tumor necrosis factor-alpha polymorphisms with Plasmodium falciparum blood infection levels. Infect Genet Evol, 2010, 10(5): 686–696

    Article  CAS  PubMed  Google Scholar 

  89. Chen J, Xu W, Zhou T, Ding Y, Duan J, Huang F. Inhibitory role of toll-like receptors agonists in Plasmodium yoelii liver stage development. Parasite Immunol, 2009, 31(8): 466–473

    Article  CAS  PubMed  Google Scholar 

  90. Greene J A, Moormann AM, Vulule J, Bockarie MJ, Zimmerman P A, Kazura JW. Toll-like receptor polymorphisms in malaria-endemic populations. Malar J, 2009, 8: 50

    Article  PubMed  Google Scholar 

  91. Crompton P D, Mircetic M, Weiss G, Baughman A, Huang C Y, Topham D J, Treanor J J, Sanz I, Lee F E, Durbin A P, Miura K, Narum D L, Ellis R D, Malkin E, Mullen G E, Miller L H, Martin L B, Pierce S K. The TLR9 ligand CpG promotes the acquisition of Plasmodium falciparum-specific memory B cells in malaria-naive individuals. J Immunol, 2009, 182(5): 3318–3326

    Article  CAS  PubMed  Google Scholar 

  92. Sam-Agudu N A, Greene J A, Opoka R O, Kazura JW, Boivin M J, Zimmerman P A, Riedesel M A, Bergemann T L, Schimmenti L A, John C C. TLR9 polymorphisms are associated with altered IFNgamma levels in children with cerebral malaria. Am J Trop Med Hyg, 2010, 82(4): 548–555

    Article  CAS  PubMed  Google Scholar 

  93. Wong S H, Gochhait S, Malhotra D, Pettersson F H, Teo Y Y, Khor C C, Rautanen A, Chapman S J, Mills T C, Srivastava A, Rudko A, Freidin M B, Puzyrev V P, Ali S, Aggarwal S, Chopra R, Reddy B S, Garg V K, Roy S, Meisner S, Hazra S K, Saha B, Floyd S, Keating B J, Kim C, Fairfax B P, Knight J C, Hill P C, Adegbola R A, Hakonarson H, Fine P E, Pitchappan R M, Bamezai R N, Hill A V, Vannberg F O. Leprosy and the adaptation of human toll-like receptor 1. PLoS Pathog, 2010, 6: e1000979

    Article  PubMed  Google Scholar 

  94. Schuring R P, Hamann L, Faber W R, Pahan D, Richardus J H, Schumann R R, Oskam L. Polymorphism N248S in the human Tolllike receptor 1 gene is related to leprosy and leprosy reactions. J Infect Dis, 2009, 199(12): 1816–1819

    Article  CAS  PubMed  Google Scholar 

  95. Krutzik S R, Ochoa MT, Sieling P A, Uematsu S, Ng YW, Legaspi A, Liu P T, Cole S T, Godowski P J, Maeda Y, Sarno E N, Norgard M V, Brennan P J, Akira S, Rea T H, Modlin R L. Activation and regulation of Toll-like receptors 2 and 1 in human leprosy. Nat Med, 2003, 9(5): 525–532

    Article  CAS  PubMed  Google Scholar 

  96. Johnson C M, Lyle E A, Omueti K O, Stepensky V A, Yegin O, Alpsoy E, Hamann L, Schumann R R, Tapping R I. Cutting edge: A common polymorphism impairs cell surface trafficking and functional responses of TLR1 but protects against leprosy. J Immunol, 2007, 178(12): 7520–7524

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xi Huang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, MH., Zhang, P. & Huang, X. Toll-like receptors in innate immunity and infectious diseases. Front. Med. China 4, 385–393 (2010). https://doi.org/10.1007/s11684-010-0600-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11684-010-0600-x

Keywords

Navigation