Skip to main content
Log in

Smaller amygdala subnuclei volume in schizophrenia patients with violent behaviors

  • Original Research
  • Published:
Brain Imaging and Behavior Aims and scope Submit manuscript

Abstract

To investigate the association between the volume of amygdala subnuclei and violent behaviors in patients with schizophrenia (SCZ). In the present study, we recruited 40 SCZ patients with violent behaviors (VS), 26 SCZ patients without violent behaviors (NVS), and 28 matched healthy controls (HC) who completed T1-weighted magnetic resonance imaging. Both the total amygdala and amygdala subnuclei volumes were estimated with FreeSurfer. When comparing the SCZ patients with HC, SCZ patients had a smaller volume of the left basal nucleus (P < 0.05, uncorrected). Further, the VS patients had a smaller volume of the left amygdala central nucleus than the NVS group (P < 0.05, Bonferroni corrected). Our study suggests that a smaller volume of the left amygdala basal nucleus may be a biomarker for SCZ and that a smaller volume of the left central nucleus may be relevant to violence risk in patients with schizophrenia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data availability

The data and materials can be provided upon reasonable requests.

References

  • Alderman, N., Knight, C., & Morgan, C. (1997). Use of a modified version of the Overt Aggression Scale in the measurement and assessment of aggressive behaviours following brain injury. Brain Injury, 11(7), 503–523.

    Article  CAS  PubMed  Google Scholar 

  • Amano, T., et al. (2011). The fear circuit revisited: Contributions of the basal amygdala nuclei to conditioned fear. Journal of Neuroscience, 31(43), 15481–15489.

    Article  CAS  PubMed  Google Scholar 

  • Anglada-Figueroa, D., & Quirk, G. J. (2005). Lesions of the basal amygdala block expression of conditioned fear but not extinction. The Journal of Neuroscience, 25(42), 9680.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bacq, A., Astori, S., Gebara, E., Tang, W., Silva, B. A., Sanchez-Mut, J., Grosse, J., Guillot de Suduiraut, I., Zanoletti, O., Maclachlan, C., Knott, G. W., Gräff, J., & Sandi, C. (2020). Amygdala GluN2B-NMDAR dysfunction is critical in abnormal aggression of neurodevelopmental origin induced by St8sia2 deficiency. Molecular Psychiatry, 25(9), 2144–2161. https://doi.org/10.1038/s41380-018-0132-3

  • Barkataki, I., et al. (2006). Volumetric structural brain abnormalities in men with schizophrenia or antisocial personality disorder. Behavioural Brain Research, 169(2), 239–247.

    Article  PubMed  Google Scholar 

  • Barth, C., et al. (2021). In vivo amygdala nuclei volumes in schizophrenia and bipolar disorders. Schizophrenia Bulletin, 47(5), 1431–1441.

    Article  PubMed  PubMed Central  Google Scholar 

  • Buckley, P. F., et al. (2004). Insight and its relationship to violent behavior in patients with schizophrenia. American Journal of Psychiatry, 161(9), 1712–1714.

    Article  PubMed  Google Scholar 

  • Coid, J. W., et al. (2013). The relationship between delusions and violence: Findings from the East London first episode psychosis study. JAMA Psychiatry, 70(5), 465–471.

    Article  PubMed  Google Scholar 

  • Dale, A. M., Fischl, B., & Sereno, M. I. (1999). Cortical surface-based analysis I. Segmentation and surface reconstruction. Neuroimage, 9(2), 179–194.

    Article  CAS  PubMed  Google Scholar 

  • Del Bene, V. A., et al. (2016). Neuroanatomical Abnormalities in Violent Individuals with and without a Diagnosis of Schizophrenia. PLoS ONE, 11(12), e0168100.

    Article  PubMed  PubMed Central  Google Scholar 

  • Dolan, M. C., & Fullam, R. S. (2009). Psychopathy and functional magnetic resonance imaging blood oxygenation level-dependent responses to emotional faces in violent patients with schizophrenia. Biological Psychiatry, 66(6), 570–577.

    Article  PubMed  Google Scholar 

  • Elbogen, E. B., & Johnson, S. C. (2009). The intricate link between violence and mental disorder: Results from the National Epidemiologic Survey on Alcohol and Related Conditions. Archives of General Psychiatry, 66(2), 152–161.

    Article  PubMed  Google Scholar 

  • Fazel, S., et al. (2009). Schizophrenia and violence: Systematic review and meta-analysis. PLoS Medicine, 6(8), e1000120.

    Article  PubMed  PubMed Central  Google Scholar 

  • Feinstein, J. S., et al. (2011). The human amygdala and the induction and experience of fear. Current Biology, 21(1), 34–38.

    Article  CAS  PubMed  Google Scholar 

  • Fischl, B., et al. (2002). Whole brain segmentation: Automated labeling of neuroanatomical structures in the human brain. Neuron, 33(3), 341–355.

    Article  CAS  PubMed  Google Scholar 

  • Fischl, B., et al. (2004). Automatically parcellating the human cerebral cortex. Cerebral Cortex, 14(1), 11–22.

    Article  PubMed  Google Scholar 

  • Gill, K. M., Miller, S. A., & Grace, A. A. (2018). Impaired contextual fear-conditioning in MAM rodent model of schizophrenia. Schizophrenia Research, 195, 343–352.

    Article  PubMed  Google Scholar 

  • Haller, J. (2018). The role of central and medial amygdala in normal and abnormal aggression: A review of classical approaches. Neuroscience and Biobehavioral Reviews, 85, 34–43.

    Article  PubMed  Google Scholar 

  • Hoptman, M. J., et al. (2010). Amygdalofrontal functional disconnectivity and aggression in schizophrenia. Schizophrenia Bulletin, 36(5), 1020–1028.

    Article  PubMed  Google Scholar 

  • Hrybouski, S., et al. (2016). Amygdala subnuclei response and connectivity during emotional processing. NeuroImage, 133, 98–110.

    Article  PubMed  Google Scholar 

  • Huang, H. C., et al. (2009). The reliability and validity of the Chinese version of the modified overt aggression scale. International Journal of Psychiatry in Clinical Practice, 13(4), 303–306.

    Article  PubMed  Google Scholar 

  • Koo, J. W., Han, J.-S., & Kim, J. J. (2004). Selective neurotoxic lesions of basolateral and central nuclei of the amygdala produce differential effects on fear conditioning. The Journal of Neuroscience, 24(35), 7654.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Laszlo, K., et al. (2016). Positive reinforcing effect of oxytocin microinjection in the rat central nucleus of amygdala. Behavioural Brain Research, 296, 279–285.

    Article  CAS  PubMed  Google Scholar 

  • Leucht, S., et al. (2016). Dose equivalents for antipsychotic drugs: The DDD method. Schizophrenia Bulletin, 42(Suppl 1), S90–S94.

    Article  PubMed  PubMed Central  Google Scholar 

  • Naudts, K., & Hodgins, S. (2005). Neurobiological Correlates of Violent Behavior Among Persons With Schizophrenia. Schizophrenia Bulletin, 32(3), 562–572.

    Article  PubMed  PubMed Central  Google Scholar 

  • Onishi, B. K. A., & Xavier, G. F. (2010). Contextual, but not auditory, fear conditioning is disrupted by neurotoxic selective lesion of the basal nucleus of amygdala in rats. Neurobiology of Learning and Memory, 93(2), 165–174.

    Article  PubMed  Google Scholar 

  • Patki, G., et al. (2015). High aggression in rats is associated with elevated stress, anxiety-like behavior, and altered catecholamine content in the brain. Neuroscience Letters, 584, 308–313.

    Article  CAS  PubMed  Google Scholar 

  • Peralta, V., & Cuesta, M. J. (1994). Psychometric properties of the positive and negative syndrome scale (PANSS) in schizophrenia. Psychiatry Research, 53(1), 31–40.

    Article  CAS  PubMed  Google Scholar 

  • Saygin, Z. M., et al. (2017). High-resolution magnetic resonance imaging reveals nuclei of the human amygdala: Manual segmentation to automatic atlas. NeuroImage, 155, 370–382.

    Article  CAS  PubMed  Google Scholar 

  • Shackman, A. J., & Fox, A. S. (2016). Contributions of the central extended amygdala to fear and anxiety. Journal of Neuroscience, 36(31), 8050–8063.

    Article  CAS  PubMed  Google Scholar 

  • Struber, D., Luck, M., & Roth, G. (2008). Sex, aggression and impulse control: An integrative account. Neurocase, 14(1), 93–121.

    Article  PubMed  Google Scholar 

  • Tani, H., et al. (2019). Comparison of emotional processing assessed with fear conditioning by interpersonal conflicts in patients with depression and schizophrenia. Psychiatry and Clinical Neurosciences, 73(3), 116–125.

    Article  PubMed  Google Scholar 

  • Tesli, N., van der Meer, D., Rokicki, J., Storvestre, G., Røsæg, C., Jensen, A., Hjell, G., Bell, C., Fischer-Vieler, T., Tesli, M., Andreassen, O. A., Melle, I., Agartz, I., & Haukvik, U. K. (2020). Hippocampal subfield and amygdala nuclei volumes in schizophrenia patients with a history of violence. European Archives of Psychiatry and Clinical Neuroscience, 270(6), 771–782. https://doi.org/10.1007/s00406-020-01098-y

  • Uliana, D. L., Resstel, L. B. M., & Grace, A. A. (2018). Fear extinction disruption in a developmental rodent model of schizophrenia correlates with an impairment in basolateral amygdala-medial prefrontal cortex plasticity. Neuropsychopharmacology, 43(12), 2459–2467.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wallace, C., Mullen, P. E., & Burgess, P. (2004). Criminal offending in schizophrenia over a 25-year period marked by deinstitutionalization and increasing prevalence of comorbid substance use disorders. American Journal of Psychiatry, 161(4), 716–727.

    Article  PubMed  Google Scholar 

  • Yang, Y., et al. (2010). Reduced hippocampal and parahippocampal volumes in murderers with schizophrenia. Psychiatry Research, 182(1), 9–13.

    Article  PubMed  PubMed Central  Google Scholar 

  • Yoder, K. J., Porges, E. C., & Decety, J. (2015). Amygdala subnuclei connectivity in response to violence reveals unique influences of individual differences in psychopathic traits in a nonforensic sample. Human Brain Mapping, 36(4), 1417–1428.

    Article  PubMed  Google Scholar 

  • Zagrodzka, J., et al. (1998). Contrasting expressions of aggressive behavior released by lesions of the central nucleus of the amygdala during wakefulness and rapid eye movement sleep without atonia in cats. Behavioral Neuroscience, 112(3), 589–602.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, M., et al. (2020). Abnormal amygdala subregional-sensorimotor connectivity correlates with positive symptom in schizophrenia. Neuroimage Clinical, 26, 102218.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Dr Yingying Tang who helped with the language revisions and Professor Yang Zhi who helped to modify our statistic.

Funding

This study is supported by grants from the Three-Year Action Plan for the Construction of Public Health System in Shanghai [grant number: GWIV-5, PI: Bin Xie]; the Science and Technology Commission of Shanghai Municipality [grant number 19411969400, PI: Xinyi Cao]; the National Natural Science Foundation of China[grant number 82271924, PI: Bin Xie; grant number 81873909, PI: Qiang Luo]; Quantitative evaluation based strategic research of interventions on relapse of schizophrenia [grant number 19411950800, PI: Bin Xie], Fund for Talents by Shanghai Mental Health Center [grant number 2018-FX-04, PI: Qian Guo], Qihang Foundation of Shanghai Mental Health Center [grant number 2019-QH-01, PI: Hao Hu]. The sponsor had no role in study design, in the collection, analysis, and interpretation of data, in the writing of the report, or in the decision to submit the paper for publication.

Author information

Authors and Affiliations

Authors

Contributions

Yang Shao, and Bin Xie designed the study protocol and supervised the administration of the study. Yi Qiao colleceted the MRI data. Hao Hu did the analysis and wrote the primary manuscript. Fengju Liu, Li Liu and Yi Mei collected the clinical data.

Corresponding authors

Correspondence to Yi Mei, Bin Xie, Yang Shao or Yi Qiao.

Ethics declarations

Ethical approval

All study procedures were approved by the Institutional Review Board of Shanghai Mental Health Center, which was in accordance with the Declaration of Helsinki.

Consent to participate

Written informed consents were provided by all the participants.

Consent to publish

All authors consented this paper to be published in Brain imaging and behaviors.

Competing interests

None.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, H., Liu, F., Liu, L. et al. Smaller amygdala subnuclei volume in schizophrenia patients with violent behaviors. Brain Imaging and Behavior 17, 11–17 (2023). https://doi.org/10.1007/s11682-022-00736-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11682-022-00736-4

Keywords

Navigation