Skip to main content
Log in

Altered structural and functional connectivity in CSF1R-related leukoencephalopathy

  • Original Research
  • Published:
Brain Imaging and Behavior Aims and scope Submit manuscript

Abstract

CSF1R-related leukoencephalopathy is a rare white-matter encephalopathy characterized by motor and neuropsychiatric symptoms due to colony-stimulating factor 1 receptor (CSF1R) gene mutation. Few studies have investigated the intrinsic brain alternations of patients with CSF1R-related leukoencephalopathy. We aim to evaluate the structural and functional changes in those patients. Seven patients with CSF1R-related leukoencephalopathy and 15 age-matched healthy controls (HCs) underwent multimodal magnetic resonance imaging (MRI), including high-resolution T1-weighted imaging, T2-weighted fluid attenuated inversion recovery imaging, diffusion-weighted imaging, diffusion kurtosis imaging (DKI) and resting-state functional MRI. First, to detect structural alterations, the gray matter volumes were compared using voxel-based morphometry analyses. Second, DKI parametric maps were used to evaluate the white matter (WM) connectivity changes. Finally, we constructed a seed-based resting-state functional connectivity matrix based on 90 regions of interest and examined the functional network changes of CSF1R-related leukoencephalopathy. Unlike the HCs, patients with CSF1R-related leukoencephalopathy predominantly had morphological atrophy in the bilateral thalamus and left hippocampus. In addition, the abnormal diffusivity was mainly distributed in the splenium of the corpus callosum, periventricular regions, centrum semiovale, subcortical U-fibers and midline cortex structures. Moreover, the patients had significantly reduced functional connectivity between the bilateral caudate nucleus and their contralateral hippocampus. Therefore, in addition to hyperintensity on the T2-weighted images, CSF1R-related leukoencephalopathy also showed abnormal structural and functional alterations, including subcortical atrophy and reduced functional connectivity, as well as altered diffuse parameters in the WM and subcortical regions. These findings expand our understanding of the potential pathophysiologic mechanism behind this hereditary disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

CSF1R :

colony-stimulating factor 1 receptor

MRI:

magnetic resonance imaging

DKI:

diffusion kurtosis imaging

ALSP:

adult-onset leukoencephalopathy with neuroaxonal spheroids and pigmented glia

HDLS:

hereditary diffuse leukoencephalopathy with spheroids

POLD:

pigmented orthochromatic leukodystrophy

WM:

white matter

DWI:

diffusion-weighted imaging

GM:

gray matter

fMRI:

Functional MRI

FC:

functional connectivity

HCs:

healthy controls

MMSE :

Mini-Mental State Examination

MoCA:

Montreal Cognitive Assessment

T2-FLAIR:

T2-weighted fluid attenuated inversion recovery imaging

TR :

repetition time

TE :

echo time

FOV :

field of view

NEX :

number of excitations

EPI :

echo planar imaging

VBM :

voxel-based morphometry

CSF:

cerebrospinal fluid

MNI :

Montreal Neurological Institute

MK :

mean kurtosis

AK :

axial kurtosis

RK :

radial kurtosis

FA:

fractional anisotropy

MD:

mean diffusivity

AD:

axial diffusivity

RD:

radial diffusivity

DKE:

Diffusion Kurtosis Estimator

VBA :

voxel-based analysis

TIV:

total intracranial volume

FDR:

false discovery rate

ROIs:

regions of interest

NBS :

network-based statistic

DTI:

diffusion tensor imaging

References

  • Adams, S. J., & Kirk AAuer, R. N. (2018). Adult-onset leukoencephalopathy with axonal spheroids and pigmented glia (ALSP): Integrating the literature on hereditary diffuse leukoencephalopathy with spheroids (HDLS) and pigmentary orthochromatic leukodystrophy (POLD). Journal of Clinical Neuroscience, 48, 42–49.

    Article  PubMed  Google Scholar 

  • Balevich, E. C., Haznedar, M. M., Wang, E., Newmark, R. E., Bloom, R., Schneiderman, J. S., Aronowitz, J., Tang, C. Y., Chu, K. W., Byne, W., Buchsbaum, M. S., & Hazlett, E. A. (2015). Corpus callosum size and diffusion tensor anisotropy in adolescents and adults with schizophrenia. Psychiatry Research, 231, 244–251.

    Article  PubMed  PubMed Central  Google Scholar 

  • Battisti, C., Di Donato, I., Bianchi, S., Monti, L., Formichi, P., Rufa, A., et al. (2014). Hereditary diffuse leukoencephalopathy with axonal spheroids: Three patients with stroke-like presentation carrying new mutations in the CSF1R gene. Journal of Neurology, 261, 768–772.

    Article  PubMed  CAS  Google Scholar 

  • Chao-Gan, Y., & Yu-Feng, Z. (2010). DPARSF: A MATLAB toolbox for “pipeline” data analysis of resting-state fMRI. Frontiers in Systems Neuroscience, 4, 13.

    PubMed  PubMed Central  Google Scholar 

  • Cheng, J. X., Zhang, H. Y., Peng, Z. K., Xu, Y., Tang, H., Wu, J. T., & Xu, J. (2018). Divergent topological networks in Alzheimer's disease: A diffusion kurtosis imaging analysis. Transl Neurodegener, 7, 10.

    Article  PubMed  PubMed Central  Google Scholar 

  • Coscia, D. M., Narr, K. L., Robinson, D. G., Hamilton, L. S., Sevy, S., Burdick, K. E., Gunduz-Bruce, H., McCormack, J., Bilder, R. M., & Szeszko, P. R. (2009). Volumetric and shape analysis of the thalamus in first-episode schizophrenia. Human Brain Mapping, 30, 1236–1245.

    Article  PubMed  Google Scholar 

  • de Jong, L. W., van der Hiele, K., Veer, I. M., Houwing, J. J., Westendorp, R. G., Bollen, E. L., et al. (2008). Strongly reduced volumes of putamen and thalamus in Alzheimer's disease: An MRI study. Brain, 131, 3277–3285.

    Article  PubMed  PubMed Central  Google Scholar 

  • Dennis, E. L., & Thompson, P. M. (2014). Functional brain connectivity using fMRI in aging and Alzheimer's disease. Neuropsychology Review, 24, 49–62.

    Article  PubMed  PubMed Central  Google Scholar 

  • Di Paola, M., Macaluso, E., Carlesimo, G. A., Tomaiuolo, F., Worsley, K. J., Fadda, L., et al. (2007). Episodic memory impairment in patients with Alzheimer's disease is correlated with entorhinal cortex atrophy. A voxel-based morphometry study. J Neurol, 254, 774–781.

    PubMed  Google Scholar 

  • Dubois, B., Feldman, H. H., Jacova, C., Dekosky, S. T., Barberger-Gateau, P., Cummings, J., et al. (2007). Research criteria for the diagnosis of Alzheimer's disease: Revising the NINCDS-ADRDA criteria. Lancet Neurology, 6, 734–746.

    Article  PubMed  Google Scholar 

  • ES, H., MM, C., Qi, L., & EX, W. (2008). Towards better MR characterization of neural tissues using directional diffusion kurtosis analysis. NeuroImage, 42, 122–134.

    Article  Google Scholar 

  • Ferrarini, L., Palm, W. M., Olofsen, H., van der Landen, R., Jan, B. G., Westendorp, R. G., et al. (2008). MMSE scores correlate with local ventricular enlargement in the spectrum from cognitively normal to Alzheimer disease. Neuroimage, 39, 1832–1838.

    Article  PubMed  Google Scholar 

  • Filippi, M., Agosta, F., Spinelli, E. G., & Rocca, M. A. (2013). Imaging resting state brain function in multiple sclerosis. Journal of Neurology, 260, 1709–1713.

    Article  PubMed  Google Scholar 

  • Gezelius, H., & Lopez-Bendito, G. (2017). Thalamic neuronal specification and early circuit formation. Developmental Neurobiology, 77, 830–843.

    Article  PubMed  CAS  Google Scholar 

  • Giraldo-Chica, M., & Woodward, N. D. (2017). Review of thalamocortical resting-state fMRI studies in schizophrenia. Schizophrenia Research, 180, 58–63.

    Article  PubMed  Google Scholar 

  • Houtchens, M. K., Benedict, R. H., Killiany, R., Sharma, J., Jaisani, Z., Singh, B., et al. (2007). Thalamic atrophy and cognition in multiple sclerosis. Neurology, 69, 1213–1223.

    Article  PubMed  CAS  Google Scholar 

  • Jang, S. H., & Kwon, H. G. (2014). Perspectives on the neural connectivity of the fornix in the human brain. Neural Regeneration Research, 9, 1434–1436.

    Article  PubMed  PubMed Central  Google Scholar 

  • Jayaweera, H. K., Hickie, I. B., Duffy, S. L., Hermens, D. F., Mowszowski, L., Diamond, K., Terpening, Z., Paradise, M., Lewis, S. J. G., Lagopoulos, J., & Naismith, S. L. (2015). Mild cognitive impairment subtypes in older people with depressive symptoms: Relationship with clinical variables and hippocampal change. Journal of Geriatric Psychiatry and Neurology, 28, 174–183.

    Article  PubMed  Google Scholar 

  • Jayaweera, H. K., Hickie, I. B., Duffy, S. L., Mowszowski, L., Norrie, L., Lagopoulos, J., & Naismith, S. L. (2016). Episodic memory in depression: The unique contribution of the anterior caudate and hippocampus. Psychological Medicine, 46, 2189–2199.

    Article  PubMed  CAS  Google Scholar 

  • Jensen, J. H., Helpern, J. A., Ramani, A., & Lu HKaczynski, K. (2005). Diffusional kurtosis imaging: The quantification of non-gaussian water diffusion by means of magnetic resonance imaging. Magnetic Resonance in Medicine, 53, 1432–1440.

    Article  PubMed  Google Scholar 

  • Kassubek, J., Juengling, F. D., & Ecker DLandwehrmeyer, G. B. (2005). Thalamic atrophy in Huntington's disease co-varies with cognitive performance: A morphometric MRI analysis. Cerebral Cortex, 15, 846–853.

    Article  PubMed  Google Scholar 

  • Kinoshita, M., Kondo, Y., Yoshida, K., Fukushima, K., Hoshi, K., Ishizawa, K., Araki, N., Yazawa, I., Washimi, Y., Saitoh, B., Kira, J. I., & Ikeda, S. I. (2014). Corpus callosum atrophy in patients with hereditary diffuse leukoencephalopathy with neuroaxonal spheroids: An MRI-based study. Internal Medicine, 53, 21–27.

    Article  PubMed  Google Scholar 

  • Konno, T., Broderick, D. F., Mezaki, N., Isami, A., Kaneda, D., Tashiro, Y., Tokutake, T., Keegan, B. M., Woodruff, B. K., Miura, T., Nozaki, H., Nishizawa, M., Onodera, O., Wszolek, Z. K., & Ikeuchi, T. (2017). Diagnostic value of brain calcifications in adult-onset Leukoencephalopathy with axonal spheroids and pigmented glia. AJNR. American Journal of Neuroradiology, 38, 77–83.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Konno, T., Kasanuki, K., Ikeuchi, T., Dickson, D. W., & Wszolek, Z. K. (2018a). CSF1R-related leukoencephalopathy: A major player in primary microgliopathies. Neurology, 91, 1092–1104.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Konno, T., Yoshida, K., Mizuta, I., Mizuno, T., Kawarai, T., Tada, M., Nozaki, H., Ikeda, S. I., Onodera, O., Wszolek, Z. K., & Ikeuchi, T. (2018b). Diagnostic criteria for adult-onset leukoencephalopathy with axonal spheroids and pigmented glia due to CSF1R mutation. European Journal of Neurology, 25, 142–147.

    Article  PubMed  CAS  Google Scholar 

  • Lee, B. Y., Zhu, X. H., & Li XChen, W. (2019). High-resolution imaging of distinct human corpus callosum microstructure and topography of structural connectivity to cortices at high field. Brain Structure & Function, 224, 949–960.

    Article  CAS  Google Scholar 

  • Luo, J., Elwood, F., Britschgi, M., Villeda, S., Zhang, H., Ding, Z., Zhu, L., Alabsi, H., Getachew, R., Narasimhan, R., Wabl, R., Fainberg, N., James, M. L., Wong, G., Relton, J., Gambhir, S. S., Pollard, J. W., & Wyss-Coray, T. (2013). Colony-stimulating factor 1 receptor (CSF1R) signaling in injured neurons facilitates protection and survival. The Journal of Experimental Medicine, 210, 157–172.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Marrale, M., Collura, G., Brai, M., Toschi, N., Midiri, F., La Tona, G., et al. (2016). Physics, techniques and review of Neuroradiological applications of diffusion kurtosis imaging (DKI). Clinical Neuroradiology, 26, 391–403.

    Article  PubMed  CAS  Google Scholar 

  • Moon, C. M., Yang, J. C., & Jeong, G. W. (2015). Explicit verbal memory impairments associated with brain functional deficits and morphological alterations in patients with generalized anxiety disorder. Journal of Affective Disorders, 186, 328–336.

    Article  PubMed  Google Scholar 

  • Muller, N. C. J., Konrad, B. N., Kohn, N., Munoz-Lopez, M., Czisch, M., Fernandez, G., et al. (2018). Hippocampal-caudate nucleus interactions support exceptional memory performance. Brain Structure & Function, 223, 1379–1389.

    Google Scholar 

  • Newman, J. (1995). Thalamic contributions to attention and consciousness. Consciousness and Cognition, 4, 172–193.

    Article  PubMed  CAS  Google Scholar 

  • Nicholson, A. M., Baker, M. C., Finch, N. A., Rutherford, N. J., Wider, C., Graff-Radford, N. R., Nelson, P. T., Clark, H. B., Wszolek, Z. K., Dickson, D. W., Knopman, D. S., & Rademakers, R. (2013). CSF1R mutations link POLD and HDLS as a single disease entity. Neurology, 80, 1033–1040.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Poldrack, R. A., & Packard, M. G. (2003). Competition among multiple memory systems: Converging evidence from animal and human brain studies. Neuropsychologia, 41, 245–251.

    Article  PubMed  Google Scholar 

  • Prieto-Morin, C., Ayrignac, X., Ellie, E., Tournier-Lasserve, E., & Labauge, P. (2016). CSF1R-related leukoencephalopathy mimicking primary progressive multiple sclerosis. Journal of Neurology, 263, 1864–1865.

    Article  PubMed  Google Scholar 

  • Qiu, A., Zhong, J., Graham, S., Chia, M. Y., & Sim, K. (2009). Combined analyses of thalamic volume, shape and white matter integrity in first-episode schizophrenia. Neuroimage, 47, 1163–1171.

    Article  PubMed  Google Scholar 

  • Rademakers, R., Baker, M., Nicholson, A. M., Rutherford, N. J., Finch, N., Soto-Ortolaza, A., Lash, J., Wider, C., Wojtas, A., DeJesus-Hernandez, M., Adamson, J., Kouri, N., Sundal, C., Shuster, E. A., Aasly, J., MacKenzie, J., Roeber, S., Kretzschmar, H. A., Boeve, B. F., Knopman, D. S., Petersen, R. C., Cairns, N. J., Ghetti, B., Spina, S., Garbern, J., Tselis, A. C., Uitti, R., Das, P., van Gerpen, J., Meschia, J. F., Levy, S., Broderick, D. F., Graff-Radford, N., Ross, O. A., Miller, B. B., Swerdlow, R. H., Dickson, D. W., & Wszolek, Z. K. (2011). Mutations in the colony stimulating factor 1 receptor (CSF1R) gene cause hereditary diffuse leukoencephalopathy with spheroids. Nature Genetics, 44, 200–205.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Richards, S., Aziz, N., Bale, S., Bick, D., Das, S., Gastier-Foster, J., et al. (2015). Standards and guidelines for the interpretation of sequence variants: A joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genetics in Medicine, 17, 405–424.

    Article  PubMed  PubMed Central  Google Scholar 

  • Roland, J. L., Snyder, A. Z., Hacker, C. D., Mitra, A., Shimony, J. S., Limbrick, D. D., Raichle, M. E., Smyth, M. D., & Leuthardt, E. C. (2017). On the role of the corpus callosum in interhemispheric functional connectivity in humans. Proceedings of the National Academy of Sciences of the United States of America, 114, 13278–13283.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rusinek, H., Endo, Y., De Santi, S., Frid, D., Tsui, W. H., Segal, S., et al. (2004). Atrophy rate in medial temporal lobe during progression of Alzheimer disease. Neurology, 63, 2354–2359.

    Article  PubMed  CAS  Google Scholar 

  • Sundal, C., Van Gerpen, J. A., Nicholson, A. M., Wider, C., Shuster, E. A., Aasly, J., et al. (2012). MRI characteristics and scoring in HDLS due to CSF1R gene mutations. Neurology, 79, 566–574.

    Article  PubMed  PubMed Central  Google Scholar 

  • Terada, S., Ishizu, H., Yokota, O., Ishihara, T., Nakashima, H., Kugo, A., Tanaka, Y., Nakashima, T., Nakashima, Y., & Kuroda, S. (2004). An autopsy case of hereditary diffuse leukoencephalopathy with spheroids, clinically suspected of Alzheimer's disease. Acta Neuropathologica, 108, 538–545.

    Article  PubMed  Google Scholar 

  • Tian, W. T., Zhan, F. X., Liu, Q., Luan, X. H., Zhang, C., Shang, L., Zhang, B. Y., Pan, S. J., Miao, F., Hu, J., Zhong, P., Liu, S. H., Zhu, Z. Y., Zhou, H. Y., Sun, S., Liu, X. L., Huang, X. J., Jiang, J. W., Ma, J. F., Wang, Y., Chen, S. F., Tang, H. D., Chen, S. D., & Cao, L. (2019). Clinicopathologic characterization and abnormal autophagy of CSF1R-related leukoencephalopathy. Transl Neurodegener, 8, 32.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tzourio-Mazoyer, N., Landeau, B., Papathanassiou, D., Crivello, F., Etard, O., Delcroix, N., et al. (2002). Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. NeuroImage, 15, 273–289.

  • van der Knaap, L. J., & van der Ham, I. J. (2011). How does the corpus callosum mediate interhemispheric transfer? A review. Behavioural Brain Research, 223, 211–221.

    Article  PubMed  Google Scholar 

  • van der Knaap, M. S., Naidu, S., Kleinschmidt-Demasters, B. K., & Kamphorst WWeinstein, H. C. (2000). Autosomal dominant diffuse leukoencephalopathy with neuroaxonal spheroids. Neurology, 54, 463–468.

    Article  PubMed  Google Scholar 

  • Vesely, B., & Antonini ARektor, I. (2016). The contribution of white matter lesions to Parkinson's disease motor and gait symptoms: A critical review of the literature. Journal of Neural Transmission (Vienna), 123, 241–250.

    Article  CAS  Google Scholar 

  • Voermans, N. C., Petersson, K. M., Daudey, L., Weber, B., Van Spaendonck, K. P., Kremer, H. P., et al. (2004). Interaction between the human hippocampus and the caudate nucleus during route recognition. Neuron, 43, 427–435.

    Article  PubMed  CAS  Google Scholar 

  • von Gunten, A., Fox, N. C., & Cipolotti LRon, M. A. (2000). A volumetric study of hippocampus and amygdala in depressed patients with subjective memory problems. The Journal of Neuropsychiatry and Clinical Neurosciences, 12, 493–498.

    Article  Google Scholar 

  • Wong, J. C., Chow, T. W., & Hazrati, L. N. (2011). Adult-onset leukoencephalopathy with axonal spheroids and pigmented glia can present as frontotemporal dementia syndrome. Dementia and Geriatric Cognitive Disorders, 32, 150–158.

    Article  PubMed  Google Scholar 

  • Yan, C. G., Wang, X. D., Zuo, X. N., & Zang, Y. F. (2016). DPABI: Data Processing & Analysis for (resting-state) brain imaging. Neuroinformatics, 14, 339–351.

    Article  PubMed  Google Scholar 

  • Zarei, M., Patenaude, B., Damoiseaux, J., Morgese, C., Smith, S., Matthews, P. M., Barkhof, F., Rombouts, S., Sanz-Arigita, E., & Jenkinson, M. (2010). Combining shape and connectivity analysis: An MRI study of thalamic degeneration in Alzheimer's disease. Neuroimage, 49, 1–8.

    Article  PubMed  Google Scholar 

Download references

Study funding

This work was supported by National Natural Science Foundation of China (81,571,086, 81,870,889 and 81,400,888), National Key R&D Program of China (2017YFC1310200), Shanghai Municipal Education Commission-Gaofeng Clinical Medicine Grant (20161401) and Interdisciplinary Project of Shanghai Jiao Tong University (YG2016MS64).

Author information

Authors and Affiliations

Authors

Contributions

Dr. Zhan: data acquisition, analysis and interpretation of data, statistical analysis, drafting the manuscript.

Dr. Zhu: data acquisition, analysis and interpretation of data.

Dr. Liu: data acquisition.

Dr. Zhou: data acquisition.

Dr. Luan: data acquisition.

Dr. Huang: data acquisition.

Dr. Liu: data acquisition.

Dr. Tian: data acquisition.

Dr. SG Wang: data acquisition.

Dr. Song: data acquisition.

Dr. Chen: data acquisition.

Dr. Zhao: data acquisition.

Dr. Y Wang: data acquisition.

Dr. Tang: data acquisition.

Dr. Chen: data acquisition.

Dr. Hu: data acquisition.

Dr. Li: funding, analysis and interpretation of data, drafting the manuscript, manuscript revision.

Prof. Cao: funding, study design and conceptualization, data acquisition, analysis and interpretation of data, statistical analysis, manuscript revision.

Corresponding authors

Correspondence to Bin-Yin Li or Li Cao.

Ethics declarations

Dr. BY Li is in charge of National Natural Science Foundation of China (81400888).

Prof. L Cao is in charge of National Natural Science Foundation of China (81571086 and 81870889), Shanghai Municipal Education Commission-Gaofeng Clinical Medicine Grant (20161401) and Interdisciplinary Project of Shanghai Jiao Tong University (YG2016MS64).

The other co-authors report no disclosures relevant to the manuscript.

Conflict of interest

None of the authors have potential conflicts of interest to be disclosed. The authors alone are responsible for the content and writing of this paper.

Ethical approval

The study was approved by the ethics committee of Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China and was registered at http://www.chictr.org.cn (registration number: ChiCTR1800015295). All participants or their guardians provided written informed consent.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 74 kb)

ESM 2

(DOCX 28 kb)

ESM 3

(JPG 437 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhan, FX., Zhu, ZY., Liu, Q. et al. Altered structural and functional connectivity in CSF1R-related leukoencephalopathy. Brain Imaging and Behavior 15, 1655–1666 (2021). https://doi.org/10.1007/s11682-020-00360-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11682-020-00360-0

Keywords

Navigation