Skip to main content
Log in

Altered voxel-wise gray matter structural brain networks in schizophrenia: Association with brain genetic expression pattern

  • Original Research
  • Published:
Brain Imaging and Behavior Aims and scope Submit manuscript

Abstract

Previous seed- and atlas-based structural covariance/connectivity analyses have demonstrated that patients with schizophrenia is accompanied by aberrant structural connection and abnormal topological organization. However, it remains unclear whether this disruption is present in unbiased whole-brain voxel-wise structural covariance networks (SCNs) and whether brain genetic expression variations are linked with network alterations. In this study, ninety-five patients with schizophrenia and 95 matched healthy controls were recruited and gray matter volumes were extracted from high-resolution structural magnetic resonance imaging scans. Whole-brain voxel-wise gray matter SCNs were constructed at the group level and were further analyzed by using graph theory method. Nonparametric permutation tests were employed for group comparisons. In addition, regression modes along with random effect analysis were utilized to explore the associations between structural network changes and gene expression from the Allen Human Brain Atlas. Compared with healthy controls, the patients with schizophrenia showed significantly increased structural covariance strength (SCS) in the right orbital part of superior frontal gyrus and bilateral middle frontal gyrus, while decreased SCS in the bilateral superior temporal gyrus and precuneus. The altered SCS showed reproducible correlations with the expression profiles of the gene classes involved in therapeutic targets and neurodevelopment. Overall, our findings not only demonstrate that the topological architecture of whole-brain voxel-wise SCNs is impaired in schizophrenia, but also provide evidence for the possible role of therapeutic targets and neurodevelopment-related genes in gray matter structural brain networks in schizophrenia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Allen, A. J., Griss, M. E., Folley, B. S., Hawkins, K. A., & Pearlson, G. D. (2009). Endophenotypes in schizophrenia: A selective review. Schizophrenia Research, 109(1–3), 24–37.

    Article  Google Scholar 

  • Anderson, V. M., Goldstein, M. E., Kydd, R. R., & Russell, B. R. (2015). Extensive gray matter volume reduction in treatment-resistant schizophrenia. The International Journal of Neuropsychopharmacology, 18(7), pyv016.

    Article  Google Scholar 

  • Ashburner, J. (2007). A fast diffeomorphic image registration algorithm. NeuroImage, 38(1), 95–113.

    Article  Google Scholar 

  • Alexander-Bloch, A., Giedd, J. N., & Bullmore, E. (2013). Imaging structural co-variance between human brain regions. Nature Reviews Neuroscience, 14(5), 322–336.

    Article  CAS  Google Scholar 

  • Bassett, D. S., Bullmore, E., Verchinski, B. A., Mattay, V. S., Weinberger, D. R., & Meyer-Lindenberg, A. (2008). Hierarchical organization of human cortical networks in health and schizophrenia. The Journal of Neuroscience, 28(37), 9239–9248.

    Article  CAS  Google Scholar 

  • Bhugra, D. (2005). The global prevalence of schizophrenia. PLoS Medicine, 2(5), e151.

  • Buckner, R. L., Sepulcre, J., Talukdar, T., Krienen, F. M., Liu, H., Hedden, T., Andrews-Hanna, J. R., Sperling, R. A., & Johnson, K. A. (2009). Cortical hubs revealed by intrinsic functional connectivity: Mapping, assessment of stability, and relation to Alzheimer's disease. The Journal of Neuroscience, 29(6), 1860–1873.

    Article  CAS  Google Scholar 

  • Chen, J., Cao, F., Liu, L., Wang, L., & Chen, X. (2015). Genetic studies of schizophrenia: An update. Neuroscience Bulletin, 31(1), 87–98.

    Article  Google Scholar 

  • Chou, K. H., Lin, W. C., Lee, P. L., Tsai, N. W., Huang, Y. C., Chen, H. L., Cheng, K. Y., Chen, P. C., Wang, H. C., Lin, T. K., Li, S. H., Lin, W. M., Lu, C. H., & Lin, C. P. (2015). Structural covariance networks of striatum subdivision in patients with Parkinson's disease. Human Brain Mapping, 36(4), 1567–1584.

    Article  Google Scholar 

  • Evans, A. C. (2013). Networks of anatomical covariance. NeuroImage, 80, 489–504.

    Article  CAS  Google Scholar 

  • Fatemi, S. H., & Folsom, T. D. (2009). The neurodevelopmental hypothesis of schizophrenia, revisited. Schizophrenia Bulletin, 35(3), 528–548.

    Article  Google Scholar 

  • Friston, K. J. (1999). Schizophrenia and the disconnection hypothesis. Acta Psychiatrica Scandinavica Supplementum, 395, 68–79.

    Article  CAS  Google Scholar 

  • Friston, K. (2005). Disconnection and cognitive dysmetria in schizophrenia. The American Journal of Psychiatry, 162(3), 429–432.

    Article  Google Scholar 

  • Greenwood, T. A., Braff, D. L., Light, G. A., Cadenhead, K. S., Calkins, M. E., Dobie, D. J., Freedman, R., Green, M. F., Gur, R. E., Gur, R. C., Mintz, J., Nuechterlein, K. H., Olincy, A., Radant, A. D., Seidman, L. J., Siever, L. J., Silverman, J. M., Stone, W. S., Swerdlow, N. R., Tsuang, D. W., Tsuang, M. T., Turetsky, B. I., & Schork, N. J. (2007). Initial heritability analyses of endophenotypic measures for schizophrenia: The consortium on the genetics of schizophrenia. Archives of General Psychiatry, 64(11), 1242–1250.

    Article  Google Scholar 

  • Guo, W., Hu, M., Fan, X., Liu, F., Wu, R., Chen, J., et al. (2014a). Decreased gray matter volume in the left middle temporal gyrus as a candidate biomarker for schizophrenia: A study of drug naive, first-episode schizophrenia patients and unaffected siblings. Schizophrenia Research, 159(1), 43–50.

    Article  Google Scholar 

  • Guo, X., Li, J., Wang, J., Fan, X., Hu, M., Shen, Y., et al. (2014b). Hippocampal and orbital inferior frontal gray matter volume abnormalities and cognitive deficit in treatment-naive, first-episode patients with schizophrenia. Schizophrenia Research, 152(2–3), 339–343.

  • Guo, W., Liu, F., Xiao, C., Liu, J., Yu, M., Zhang, Z., et al. (2015). Increased short-range and long-range functional connectivity in first-episode, medication-naive schizophrenia at rest. Schizophrenia Research, 166(1–3), 144–150.

  • Hawrylycz, M. J., Lein, E. S., Guillozet-Bongaarts, A. L., Shen, E. H., Ng, L., Miller, J. A., van de Lagemaat, L. N., Smith, K. A., Ebbert, A., Riley, Z. L., Abajian, C., Beckmann, C. F., Bernard, A., Bertagnolli, D., Boe, A. F., Cartagena, P. M., Chakravarty, M. M., Chapin, M., Chong, J., Dalley, R. A., Daly, B. D., Dang, C., Datta, S., Dee, N., Dolbeare, T. A., Faber, V., Feng, D., Fowler, D. R., Goldy, J., Gregor, B. W., Haradon, Z., Haynor, D. R., Hohmann, J. G., Horvath, S., Howard, R. E., Jeromin, A., Jochim, J. M., Kinnunen, M., Lau, C., Lazarz, E. T., Lee, C., Lemon, T. A., Li, L., Li, Y., Morris, J. A., Overly, C. C., Parker, P. D., Parry, S. E., Reding, M., Royall, J. J., Schulkin, J., Sequeira, P. A., Slaughterbeck, C. R., Smith, S. C., Sodt, A. J., Sunkin, S. M., Swanson, B. E., Vawter, M. P., Williams, D., Wohnoutka, P., Zielke, H. R., Geschwind, D. H., Hof, P. R., Smith, S. M., Koch, C., Grant, S. G. N., & Jones, A. R. (2012). An anatomically comprehensive atlas of the adult human brain transcriptome. Nature, 489(7416), 391–399.

    Article  CAS  Google Scholar 

  • Hayasaka, S., & Laurienti, P. J. (2010). Comparison of characteristics between region-and voxel-based network analyses in resting-state fMRI data. NeuroImage, 50(2), 499–508.

    Article  Google Scholar 

  • Honea, R. A., Meyer-Lindenberg, A., Hobbs, K. B., Pezawas, L., Mattay, V. S., Egan, M. F., Verchinski, B., Passingham, R. E., Weinberger, D. R., & Callicott, J. H. (2008). Is gray matter volume an intermediate phenotype for schizophrenia? A voxel-based morphometry study of patients with schizophrenia and their healthy siblings. Biological Psychiatry, 63(5), 465–474.

    Article  Google Scholar 

  • Insel, T. R. (2010). Rethinking schizophrenia. Nature, 468(7321), 187–193.

    Article  CAS  Google Scholar 

  • Kay, S. R., Fiszbein, A., & Opler, L. A. (1987). The positive and negative syndrome scale (PANSS) for schizophrenia. Schizophrenia Bulletin, 13(2), 261–276.

    Article  CAS  Google Scholar 

  • Kikinis, Z., Fallon, J. H., Niznikiewicz, M., Nestor, P., Davidson, C., Bobrow, L., Pelavin, P. E., Fischl, B., Yendiki, A., McCarley, R. W., Kikinis, R., Kubicki, M., & Shenton, M. E. (2010). Gray matter volume reduction in rostral middle frontal gyrus in patients with chronic schizophrenia. Schizophrenia Research, 123(2–3), 153–159.

    Article  CAS  Google Scholar 

  • Lichtenstein, P., Yip, B. H., Bjork, C., Pawitan, Y., Cannon, T. D., Sullivan, P. F., et al. (2009). Common genetic determinants of schizophrenia and bipolar disorder in Swedish families: A population-based study. Lancet, 373(9659), 234–239.

    Article  CAS  Google Scholar 

  • Liu, F., Guo, W., Liu, L., Long, Z., Ma, C., Xue, Z., Wang, Y., Li, J., Hu, M., Zhang, J., du, H., Zeng, L., Liu, Z., Wooderson, S. C., Tan, C., Zhao, J., & Chen, H. (2013). Abnormal amplitude low-frequency oscillations in medication-naive, first-episode patients with major depressive disorder: A resting-state fMRI study. Journal of Affective Disorders, 146(3), 401–406.

    Article  Google Scholar 

  • Liu, F., Guo, W., Fouche, J. P., Wang, Y., Wang, W., Ding, J., Zeng, L., Qiu, C., Gong, Q., Zhang, W., & Chen, H. (2015a). Multivariate classification of social anxiety disorder using whole brain functional connectivity. Brain Structure & Function, 220(1), 101–115.

    Article  CAS  Google Scholar 

  • Liu, F., Zhu, C., Wang, Y., Guo, W., Li, M., Wang, W., Long, Z., Meng, Y., Cui, Q., Zeng, L., Gong, Q., Zhang, W., & Chen, H. (2015b). Disrupted cortical hubs in functional brain networks in social anxiety disorder. Clinical Neurophysiology, 126(9), 1711–1716.

    Article  Google Scholar 

  • Liu, F., Zhuo, C., & Yu, C. (2016). Altered cerebral blood flow covariance network in schizophrenia. Frontiers in Neuroscience, 10, 308.

    PubMed  PubMed Central  Google Scholar 

  • Liu, F., Wang, Y., Li, M., Wang, W., Li, R., Zhang, Z., Lu, G., & Chen, H. (2017). Dynamic functional network connectivity in idiopathic generalized epilepsy with generalized tonic-clonic seizure. Human Brain Mapping, 38(2), 957–973.

    Article  Google Scholar 

  • van den Heuvel, M. P., & Fornito, A. (2014). Brain networks in schizophrenia. Neuropsychology Review, 24(1), 32–48.

    Article  Google Scholar 

  • van den Heuvel, M. P., Sporns, O., Collin, G., Scheewe, T., Mandl, R. C., Cahn, W., et al. (2013). Abnormal rich club organization and functional brain dynamics in schizophrenia. JAMA Psychiatry, 70(8), 783–792.

    Article  Google Scholar 

  • Ortiz-Teran, L., Diez, I., Ortiz, T., Perez, D. L., Aragon, J. I., Costumero, V., et al. (2017). Brain circuit-gene expression relationships and neuroplasticity of multisensory cortices in blind children. Proceedings of the National Academy of Sciences of the United States of America, 114(26), 6830–6835.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ripke, S., Neale, B. M., Corvin, A., Walters, J. T., Farh, K.-H., Holmans, P. A., et al. (2014). Biological insights from 108 schizophrenia-associated genetic loci. Nature, 511(7510), 421.

    Article  CAS  Google Scholar 

  • Romme, I. A., de Reus, M. A., Ophoff, R. A., Kahn, R. S., & van den Heuvel, M. P. (2017). Connectome Disconnectivity and cortical gene expression in patients with schizophrenia. Biological Psychiatry, 81(6), 495–502.

    Article  CAS  Google Scholar 

  • Roshchupkin, G. V., Adams, H. H., van der Lee, S. J., Vernooij, M. W., van Duijn, C. M., Uitterlinden, A. G., van der Lugt, A., Hofman, A., Niessen, W. J., & Ikram, M. A. (2016). Fine-mapping the effects of Alzheimer's disease risk loci on brain morphology. Neurobiology of Aging, 48, 204–211.

    Article  Google Scholar 

  • Rowland, L. M., Demyanovich, H. K., Wijtenburg, S. A., Eaton, W. W., Rodriguez, K., Gaston, F., Cihakova, D., Talor, M. V., Liu, F., McMahon, R. R., Hong, L. E., & Kelly, D. L. (2017). Antigliadin antibodies (AGA IgG) are related to neurochemistry in schizophrenia. Frontiers in Psychiatry, 8, 104.

    Article  Google Scholar 

  • Subira, M., Cano, M., de Wit, S. J., Alonso, P., Cardoner, N., Hoexter, M. Q., et al. (2016). Structural covariance of neostriatal and limbic regions in patients with obsessive-compulsive disorder. Journal of Psychiatry & Neuroscience, 41(2), 115–123.

    Article  Google Scholar 

  • Tam, G. W., van de Lagemaat, L. N., Redon, R., Strathdee, K. E., Croning, M. D., Malloy, M. P., et al. (2010). Confirmed rare copy number variants implicate novel genes in schizophrenia. Biochemical Society Transactions, 38(2), 445–451.

    Article  CAS  Google Scholar 

  • Tregellas, J. R., Shatti, S., Tanabe, J. L., Martin, L. F., Gibson, L., Wylie, K., & Rojas, D. C. (2007). Gray matter volume differences and the effects of smoking on gray matter in schizophrenia. Schizophrenia Research, 97(1–3), 242–249.

    Article  Google Scholar 

  • Wang, J., Wang, L., Zang, Y., Yang, H., Tang, H., Gong, Q., Chen, Z., Zhu, C., & He, Y. (2009). Parcellation-dependent small-world brain functional networks: A resting-state fMRI study. Human Brain Mapping, 30(5), 1511–1523.

    Article  Google Scholar 

  • Wang, J. H., Zuo, X. N., Gohel, S., Milham, M. P., Biswal, B. B., & He, Y. (2011). Graph theoretical analysis of functional brain networks: Test-retest evaluation on short- and long-term resting-state functional MRI data. PLoS One, 6(7), e21976.

    Article  CAS  Google Scholar 

  • Xia, M., Wang, J., & He, Y. (2013). BrainNet viewer: A network visualization tool for human brain connectomics. PLoS One, 8(7), e68910.

    Article  CAS  Google Scholar 

  • Xu, Q., Fu, J., Liu, F., Qin, W., Liu, B., Jiang, T., et al. (2018). Left parietal functional connectivity mediates the association between COMT rs4633 and verbal intelligence in healthy adults. Frontiers in Neuroscience, 12(233). https://doi.org/10.3389/fnins.2018.00233.

  • Zalesky, A., Fornito, A., Harding, I. H., Cocchi, L., Yucel, M., Pantelis, C., et al. (2010). Whole-brain anatomical networks: Does the choice of nodes matter? NeuroImage, 50(3), 970–983.

    Article  Google Scholar 

  • Zhang, B., Xu, Y. H., Wei, S. G., Zhang, H. B., Fu, D. K., Feng, Z. F., et al. (2014). Association study identifying a new susceptibility gene (AUTS2) for schizophrenia. International Journal of Molecular Sciences, 15(11), 19406–19416.

    Article  Google Scholar 

  • Zhu, J., Zhuo, C., Xu, L., Liu, F., Qin, W., & Yu, C. (2017). Altered coupling between resting-state cerebral blood flow and functional connectivity in schizophrenia. Schizophrenia Bulletin, 43(6), 1363–1374.

    Article  Google Scholar 

  • Zielinski, B. A., Gennatas, E. D., Zhou, J., & Seeley, W. W. (2010). Network-level structural covariance in the developing brain. Proceedings of the National Academy of Sciences of the United States of America, 107(42), 18191–18196.

    Article  CAS  Google Scholar 

  • Zugman, A., Assuncao, I., Vieira, G., Gadelha, A., White, T. P., Oliveira, P. P., et al. (2015). Structural covariance in schizophrenia and first-episode psychosis: An approach based on graph analysis. Journal of Psychiatric Research, 71, 89–96.

    Article  Google Scholar 

Download references

Funding

This study was funded by grants from the National Natural Science Foundation of China (81501451 to F.L.), the Natural Science Foundation of Tianjin (16JCYBJC24200 to J.L. and 17JCZDJC35700 to C.Z.), the Tianjin Health Bureau Foundation (2014KR02 to C.Z.), the Tianjin Health Key Program (13KG118 to J.L.), and the “New Century” Talent Training Project of Tianjin Medical University General Hospital (2017 to F.L.)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chuanjun Zhuo.

Ethics declarations

Conflict of interest

All the authors declare that they have no conflict of interest.

Ethical approval

This study was approved by the ethical committee of the Tianjin Medical University General Hospital.

Informed consent

Written informed consent was obtained from all participants.

Electronic supplementary material

Fig. S1

Between-group comparisons of structural covariance strength (SCS) maps (left panel: mean SCS maps subtraction; right panel: raw p values obtained by permutation test) across a range of analytical approaches: (A) weighted network, correlation threshold = 0.2, voxel size = 3 × 3 × 3 mm3; (B) binarized network, correlation threshold = 0.2, voxel size = 3 × 3 × 3 mm3; (C) weighted network, correlation threshold = 0.2, voxel size = 1.5 × 1.5 × 1.5 mm3; (D) weighted network, correlation threshold = 0.1, voxel size = 3 × 3 × 3 mm3; (E) weighted network, correlation threshold = 0.3, voxel size = 3 × 3 × 3 mm3. The SCS maps were visualized with the BrainNet Viewer (Xia et al. 2013). Abbreviation: SCH, schizophrenia; HC, healthy controls; mSCS, mean structural covariance strength; L, left; R, right. (GIF 260 kb)

High resolution image (TIF 3050 kb)

ESM 1

(XLSX 100 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, F., Tian, H., Li, J. et al. Altered voxel-wise gray matter structural brain networks in schizophrenia: Association with brain genetic expression pattern. Brain Imaging and Behavior 13, 493–502 (2019). https://doi.org/10.1007/s11682-018-9880-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11682-018-9880-6

Keywords

Navigation